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Pathogen evolution is one of the least predictable components of disease emergence, particularly in

nature. Here, building on principles established by the geographic mosaic theory of coevolution, we

develop a quantitative, spatially-explicit framework for mapping the evolutionary risk of viral emergence.

Driven by interest in diseases like SARS, MERS, and COVID-19, we examine the global biogeography of

bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are

distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns

like a unique pool of merbecoviruses in the Neotropics, a recently-discovered lineage of divergent

nobecoviruses in Madagascar, and–most importantly–hotspots of diversification in southeast Asia,

sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence

events. Our framework may help identify hotspots of future risk that have also been previously

overlooked, like west Africa and the Indian subcontinent, and may more broadly help researchers

understand how host ecology shapes the evolution and diversity of pandemic threats.



Disease emergence is complex, and is driven not only by animal-human contact, but also by the1

underlying evolutionary dynamics in viral reservoirs.1 Although host richness is often used as a superficial2

proxy for spillover risk,2–4 these approaches oversimplify the relevant interspecific heterogeneity in3

immunology, behavior, and other traits, and therefore overlook unique host pools that allow for the rapid4

evolution of highly divergent viruses.5 In the case of generalist pathogens like betacoronaviruses, there is5

conceptual and empirical support to the idea that these community-level mechanisms are even more6

important,6 particularly given that cross-species transmission may, as a rule, structure viral evolution7

more than co-divergence with hosts.7 This creates a disconnect between coevolutionary theory and most8

existing ecological frameworks for mapping spillover risk.9

The geographic mosaic theory of coevolution (GMTC) attempts to explicitly connect microevolutionary10

dynamics to the macroecology and biogeography of symbiotic interactions.8 The GMTC posits that11

coevolutionary processes among pairs9 or complexes10 of species are structured in space by the rippling12

effects of abiotic conditions onto evolutionary mechanisms, giving rise to fragmented systems with13

different ecologies over large spatial extents.11 The GMTC predicts a spatial fragmentation of14

coevolutionary dynamics under the joint action of three processes:12 coevolutionary hot- and coldspots,15

which appear when the intensity of interaction (in terms of reciprocal fitness consequences) varies16

spatially; selection mosaics, wherein the intensity of selection varies across space, driven by both the biotic17

complexity of the community (locally diverse hosts and viruses are more biotically complex) and the local18

favorability of the environment;13 and trait remixing, which occurs when coevolutionary dynamics change19

when community-level functional traits change through meta-community dynamics.20

Here, we apply the GMTC to explore and explain the global biogeography of betacoronaviruses, the group21

that includes SARS-CoV, MERS-CoV, and SARS-CoV-2. In their bat reservoirs, coronaviruses evolve22

through a mix of host jumps, recombination among disparate lineages, and, to a lesser degree,23

co-divergence with their hosts—2a mix of mechanisms that creates a complex and nonlinear relationship24

between host diversity and viral emergence. Working from a recently published database of bat hosts of25

betacoronaviruses, we test whether spatial structure in bat-betacoronavirus coevolution is identifiable at a26

global scale. Aiming to explain these patterns, we develop a generalized framework for applying the27

GMTC to host-virus interactions, with a specific emphasis on the potential to create independent28

coevolutionary dynamics (and therefore spatial fragmentation in risk) through heterogeneity. We develop29

a trivariate risk assessment system that connects each GMTC mechanism to a quantifiable aspect of30
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host-virus interactions: (i) viral sharing rates in host communities, representing the strength of potential31

interaction between viruses and any one host (i.e., places where viruses undergo constant host switching32

may be coevolutionary coldspots); (ii) the phylogenetic diversity of hosts, as a proxy for variation in the33

immunological mechanisms that antagonize viruses (i.e., the selection mosaic); and (iii) the local34

uniqueness of the bat community, representing the potential for viruses to be exposed to novel host traits35

(e.g., variation in receptor sequences). Together, we argue that these can be used to identify and map the36

evolutionary drivers that—in conjunction with transmission processes (e.g., viral prevalence in reservoirs37

and animal-human contact rates)— determine disease emergence risk.38

Results and Discussion39

Bat and betacoronavirus biogeography are broadly consistent40

Most previous work has assumed that the presence or richness of key groups of bat hosts are predictive of41

coronavirus diversity.2,3 Projecting bat and betacoronavirus phylogeny over space (fig. 1), we find support42

for the idea that bat community assembly is directly responsible for a global mosaic of viral evolution. The43

distinct groupings (represented by different colors, symbolizing positions in a subspace formed by the first44

two phylogenetic principal components) are essentially equivalent between the two groups, and can be45

coarsely delineated as (1) south and southeast Asia; (2) east Asia (including northern China), west Asia,46

and the Mediterranean coast; (3) Eurasia above a northing of 40; and (4) Africa and Latin America. In47

some cases, this diverges from expectations about coronavirus biogeography: for example, previous work48

has rarely flagged India as a region of interest, but for both bats and betacoronaviruses, the subcontinent49

falls into the same regions as the southeast Asian peninsula (and indeed, the region is home to known bat50

hosts of multiple betacoronavirus subgenera, including nobecoviruses, sarbecoviruses, and51

merbecoviruses).352

[Figure 1 about here.]53

Overall, these results suggest that the boundaries of bat and betacoronavirus biogeographic regions are54

broadly consistent at a global scale; perfect matching between the biogeographic regions would have55

indicated that the signal of virus distribution is fully predicted by bat hosts ranges. Areas for which the56
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biogeographic regions for bats and betacoronaviruses differ are primarily (i) southeast Asia and southern57

China, and (ii) the Arabian peninsula, which are both regions where zoonotic transmission has been58

documented (potentially driving a unique level of viral sampling effort that generates these patterns).59

These spatially limited mismatches nonwithstanding, the large level of congruence may be surprising,60

given that cross-species transmission may play a stronger role in coronavirus diversification than61

cospeciation—2a property that would theoretically allow for substantial broad divergence in their62

biogeography. However, host jumps at the family level or higher are relatively rare and significant events63

in coronavirus evolutionary history;2,14 as a result, the mosaic of betacoronavirus phylogeography is64

assembled from a set of overlapping smaller coevolutionary systems, superimposed in space and filtered65

by the importance of different subgroups in local host communities. For example, the most speciose and66

cosmopolitan family of bats, the vesper bats (Vespertilionidae), are considered the primary hosts of the67

subgenusMerbecovirus (MERS-like viruses);3,14 but in the Americas, where merbecoviruses are the only68

lineage present, they have only been found in other bat taxa (e.g., Molossidae, Phyllostomidae).15–18 At the69

coarsest scale, these heterogeneities are lost, and betacoronavirus biogeography tracks the deep rifts in bat70

evolutionary history—but within broad regions, the component coevolutionary systems may have very71

different dynamics.72

Hotspots of bat and betacoronavirus biodiversity are distinct73

Bats, the second most diverse groups of mammals, are found worldwide; gradients in their species74

richness generally track broader patterns of mammal diversity,19 with a striking Neotropical hotspot75

(especially in the Amazon basin) and a secondary hotspot centered in Indochina. These hotspots of bat76

diversity are generally presumed to be hotspots of viral adaptive radiation, and therefore areas of concern77

for human health.2,20 However, the hotspots of known bat betacoronavirus hosts show a distinct pattern,78

with primary hotspots (both in terms of area and higher values) of host richness situated in southeast79

Asia, parts of southern Europe, and to a lesser extent parts of Africa in the -25-0 range of latitudes (fig. 2;80

top). Although hundreds of species likely host undiscovered betacoronaviruses, machine learning81

predictions have suggested that these undiscovered reservoirs should follow the same diversity gradient.2182

In principle, these hotspots of locally-diverse, virus-rich bat communities should drive more adaptive83

diversification in their viruses.84

5 of 30



[Figure 2 about here.]85

However, we find that the global pattern of betacoronavirus phylogenetic distinctiveness is quite distinct86

from both bat host richness and phylogenetic distinctiveness (fig. 2; bottom). In contrast to the sparsity of87

Neotropical betacoronavirus hosts, South and Central America have the most evolutionary distinct hosts88

and viruses, followed by secondary hotspots in southeast Asia and the Rift Valley region have mostly89

distinct viruses. Some degree of sampling bias may contribute to these patterns: for example, the90

Neotropics are one of the places where the fewest bat betacoronavirus sequences have been generated,22–2491

resulting in a sparser phylogenetic tree, and artificially inflating distinctiveness; conversely,92

disproportionate research effort in eastern China25 may have led to a more complete inventory of the local93

diversity of coronaviruses, again inflating these metrics relative to underlying patterns. Even accounting94

for these potential biases, though, there is obvious heterogeneity in betacoronavirus evolutionary95

distinctiveness that is distinct from overall bat diversity.96

Overall, these patterns recapitulate the evolutionary history of both the order Chiroptera and the genus97

Betacoronavirus. Horseshoe bats (Rhinolophidae) include the reservoirs of the SARS-like viruses98

(subgenus Sarbecovirus), the group of pandemic threats that have been of the greatest interest to99

researchers14 (and so have been sampled most intensively;).25 The hotspots of host richness and viral100

diversity in southeast Asia—both of which are disproportionately high, considering the global landscape101

of bat species richness—are almost entirely driven by viral adaptive radiation through host switching102

within this clade3,21. In contrast, the Neotropical hotspot of viral distinctiveness is driven by isolation by103

host vicariance. Out of the four main groups of betacoronaviruses, only merbecoviruses have been found104

in animals in the Americas— an introduction that is generally presumed to be ancient.3,26 While105

comparatively understudied, NewWorld merbecoviruses have been found in the ghost-faced bats106

(Mormoopidae), Neotropical leaf-nosed bats (Phyllostomidae), and free-tailed bats (Molossidae).15–18 The107

former two groups and a clade of the latter are endemic to the Neotropics, while the explosive adaptive108

radiations of the phyllostomids are responsible for the hotspot of bat diversity in the Amazon.27 Together,109

these clades of NewWorld bats play host to a distinct regime of betacoronavirus coevolution.110

Our approach is potentially limited by sampling bias: key hotspots identified by our model have, indeed,111

been sampled intensely following major zoonotic emergence events. In these areas, more betacoronavirus112

hosts will have been discovered, leading to higher overall diversity and potentially higher sharing.113
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Similarly, hotspots of evolutionary uniqueness - as in the Arabian peninsula - could reflect much broader114

lineages that have only been sampled in focal areas for public health. While the discovery of new branches115

of bat-betacoronavirus coevolution is certainly likely, and might change some of the observed patterns, our116

framework is likely to be fairly robust: the 126 hosts in our study capture nearly 10% of global bat diversity,117

and the underlying evolutionary patterns they represent are much less sensitive to new information than118

any inferences about viral evolution.119

Coevolutionary regimes structure evolutionary potential for zoonotic emergence120

The existence of well-defined cophylogenetic regions suggests that the bat-betacoronavirus system is121

spatially fragmented enough to create divergent coevolutionary trajectories; in turn, this coevolutionary122

mosaic may alter the risk of zoonotic emergence. These ideas are, respectively, supported by the existence123

of hotspots of viral uniqueness and the diverse origins of human betacoronaviruses. Together, this124

framework points to a predictable relationship between host community structure and coevolutionary125

pressure: phylogeographic structure in bat hosts (and their diverse immune strategies;)28 creates a126

landscape of selective pressure; the trajectory of viruses’ coevolutionary response is, in turn, constrained127

by their opportunities for either specialization or diversification through host jumps and recombination.128

Based on the geographic mosaic theory of coevolution, we developed a trivariate map of coevolutionary129

pressure (fig. 3): (1) host phylogenetic diversity: a high diversity of evolutionary histories should expose130

viruses to more variation in host immune traits; (2) host community uniqueness: exposure to greater host131

trait heterogeneity can drive viral diversification, and coevolving with more unique host communities132

should create more unique branches of viral evolution; and (3) propensity for viral sharing: frequent133

cross-species transmission may act as a buffer on selective pressure, while lower rates of exchange may134

enable more simultaneous trajectories of viral specialization to coexist within a given community. We135

combine global maps of all three to generate a map of coevolutionary regimes, where close colors136

represent similar risks, and paler pixels represent overall higher risk (see Methods). We find that these137

regions do not neatly overlap with those defined in fig. 1 or fig. 2, reinforcing the notion that local-scale138

coevolutionary mosaics can form within cophylogenetic regions.139

[Figure 3 about here.]140

The greatest evolutionary potential for zoonotic emergence exists where pathogen pools have a high141
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genetic diversity and high propensity for cross-species transmission. In our framework, emergence risk is142

therefore maximized under higher phylogenetic diversity (viruses are exposed to different host clades),143

higher host uniqueness (viruses are experiencing novel, heterogeneous host traits combinations), and low144

to medium viral sharing (host-virus pairs can coevolve independently, but divergent viruses may still have145

opportunities for recombination). In fig. 3, this corresponds to yellow areas (dynamics dominated by low146

viral sharing, with equal contributions of selection mosaics and trait remixing; southeast Asia, and the147

Indian sub-continent), green-yellow areas (dynamics with low viral sharing but dominated by the148

selection mosaic effect of host diversity; sub-Saharan Africa), and red-yellow areas (dynamics with low149

viral sharing but dominated by trait remixing in host communities; the Middle East). Translating this axis150

of variation back into a univariate risk map (fig. 4) highlights that this evolutionary landscape has a151

striking correspondence to regions where zoonotic betacoronaviruses have previously emerged. Our152

findings align with predictions regarding the spatial location of cross-species transmission. These153

locations not only pose a potential risk of viral jumps that could endanger human health but also provide154

valuable information for monitoring wildlife health. This could guide us to determine where and what155

measures to implement for effectively monitoring wildlife and human betacoronavirus outbreaks before156

they escalate to critical levels. Nevertheless, there are actually very few documented cases of emergence157

events, and similarities could be some degree of coincidental.158

Compared to approaches that map emergence risk based only on the number of known bat hosts of159

betacoronaviruses, our framework suggests regions where high viral sharing dominates coevolutionary160

dynamics—such as Latin America, or Eurasia above a northing of 30—would pose less of a relative risk of161

zoonotic emergence. Nevertheless, areas of high host uniqueness coupled with high viral sharing162

(red-to-pink in fig. 3) could create hotspots facilitated by viral codivergence. Our framework identifies163

Madagascar, where most bat species are endemic following evolutionary divergence from sister species in164

both African and Asian continents,29 as one such hotspot; interestingly, a recent study30 reported a novel165

and highly divergent lineage of nobecoviruses from Madagascar-endemic pteropid bat species (Pteropus166

rufus and Rousettus madagascariensis), again supporting the predictive power of the coevolutionary167

framework.168

[Figure 4 about here.]169
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Human landscapes filter the geography of emergence risk170

The relationship between the underlying pathogen pool and emergence risk is mediated by both171

human-wildlife interfaces (the probability of spillover) and opportunities for onward horizontal172

transmission (the probability that spillovers become epidemics)1. It must be noted that the assesment of173

risk based on the GMTC mechanisms does not account for human presence; for this reason, it represents174

“potential” level of risk, which must be re-evaluated in the light of human presence. As a proxy for both,175

we finally overlaid the risk component from the composite map (see above) with the proportion of built176

land, as a proxy for a mix of habitat disturbance, potential for bat synanthropy or contact with bridge hosts177

like livestock,31,32 and human population density and connectivity1,33,34 (fig. 5). Accounting for these178

factors, most of South America and Europe are at comparatively lower risk, as–although densely179

populated–settlements tend to be in areas with lower potential risk. Conversely, regions like Malaysia and180

the northern coast of Australia have a high evolutionary risk component, but should represent a relatively181

lower effective risk due to low human density. However, southeast Asia, the Indian subcontinent, and182

scattered hotspots in sub-Saharan Africa are at high risk due to the overlap between human populations183

and natural opportunities for cross-species transmission of betacoronaviruses.184

[Figure 5 about here.]185

Reassuringly, these predictions correspond to the geographic origins of the three bat-origin coronaviruses186

that have recently emerged in human populations. While available information puts the spillover of187

SARS-CoV-2 in a live animal market in Wuhan, China, the ultimate origin of the virus is almost certainly188

in a divergent lineage of sarbecoviruses from Indochina that was poorly characterized prior to the189

pandemic.22–24 Similarly, the SARS-CoV outbreak began in Guangdong province in 2002, reaching190

humans through small carnivore bridge hosts, but was eventually traced back to a set of likely progenitor191

viruses found in cave-dwelling horseshoe bats in Yunnan province;35 nearby, antibody evidence has192

indicated human exposure to SARS-like viruses.36 MERS-CoV was first detected in Jordan, but is193

widespread in camels in East Africa and the Middle East, and may have reached its bridge host decades194

earlier than originally supposed;37 as a result, the geography of the original bat-to-camel transmission is195

still widely regarded as uncertain. All of these are broadly consistent with the risk factors we identify.196

Notably, India and west Africa are additional hotspots that have yet to experience the emergence of a bat197

coronavirus into human populations, but may still be at risk—particularly given known gaps in bat198
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surveillance,25 and a dense population in both regions with global connectivity. In any of these regions,199

surveillance on viral reservoirs can be paired with targeted monitoring of high-risk human populations200

(i.e., those with regular wildlife contact)38 for maximum impact.201

Conclusion202

Bats emerged around 64 million years ago, and are one of the most diverse mammalian orders, with more203

than 1,400 estimated species.39,40 They exhibit a broad variety of habitat use, behaviour, and feeding204

strategies, putting them at key positions in the delivery and provisioning of several ecosystem services, tied205

to important ecosystem-derived benefits to humans.41 Over two-thirds of bats are known to be either206

obligate or facultative insectivores, therefore actively contributing for agricultural pest control,42,43 and207

vectors of pathogens that put a risk on human health;44,45 some other species are essential links in many208

seed-dispersal networks.46 However, many of these species face a high risk of extinction, particularly given209

persecution and killings that sometimes follows from messaging about their role in disease emergence.210

Areas where bats, viruses, and humans co-occur are not always hotspots of risk for human heath; as such,211

developing more precise ways to map zoonotic hazards can help bats and humans coexist safely, and212

support the conservation of these important and unique animals.213

Here, we propose a simple framework with broad explanatory power that helps contextualize discoveries214

like highly divergent nobecoviruses in Madagascar and the once-neglected adaptive radiation of215

sarbecoviruses in the Indochinese peninsula. In doing so, it advances ecological theory beyond the current216

state of the art for global maps of emergence risk. For example, previous studies that have used host217

richness as a proxy have predicted a high diversity of unsampled bat viruses,20 bat coronaviruses,2 and218

even specifically betacoronaviruses21 in both the Amazon and southeast Asia. While we find that both219

regions are characterized by unique and diverse communities of both hosts and viruses, our framework is220

able to identify key differences between the two systems. We find that the merbecovirus complex in Latin221

America has been a unique branch of evolution separate from the rest of the global pool, but with limited222

potential for viral diversification— a finding that is supported by previous work indicating a higher rate of223

codivergence in Latin America.2,47 In contrast, in southeast Asia, host richness and viral distinctiveness224

are high but sharing is low; this suggests a different type of evolutionary dynamics that could generate225

high local diversity of viruses through host switching and viral recombination (see e.g.,14 as well as the226
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discovery of recombinant viruses with genetic material from both the SARS-CoV and SARS-CoV-2227

branches of the Sarbecovirus lineage).48Both of these regions are priority areas for sampling, especially228

given predictions that they contain many bat hosts of undiscovered betacoronaviruses.21,25 However, both229

the evolutionary and ecological aspects of emergence risk are higher in southeast Asia—a fact that will230

only become more relevant, as bats track shifting climates and exchange viruses with other species,231

creating a hotspot of elevated cross-species transmission unique to the region.33,49232

Our trivariate additive mapping of components of risk (fig. 3) aims to elicit the complexity of spatial233

cross-species transmission risk beyond the mere presence or absence of the pathogen host in a specific234

location. By considering coevolutionary factors such as viral sharing and host uniqueness, we suggest235

insights that can aid in identifying potential locations for surveillance of betacoronavirus circulation and236

assessing the risk of cross-species transmission to other mammals. In communities characterized by237

diverse but unique host populations, with limited viral sharing between them, we could encounter viruses238

that specialize in targeting the immune system of specific hosts. This implies a low likelihood of infecting239

novel hosts but, once locally introduced into a new host (either a new species, or an immunologically240

naïve population), the specialized virus could spread relatively easily due to encountering little immune241

resistance.50 With the right combination of viral traits, such as low disease-induced mortality or high242

transmission rate, this could lead to successfully spread within the new host community. However, while243

high adaptation to a specific host can be advantageous, it may also lead to maladaptation when the244

pathogen encounters a new unsuitable host, potentially resulting in its extinction.245

Bats—and the spillover of their viruses—are also sensitive to anthropogenic factors others than climate246

change, including deforestation and other kinds of habitat loss, increased stress, and greater contact with247

potential bridge hosts like domesticated species.31,51–53 This represents a challenge for both conservation248

strategies and pandemic prevention,54 but identifying areas at risk, and protecting the health of bats and249

ecosystems within those zones, can be a win-win intervention for both.55–57 As we scale these predictions250

down in space to finer spatial resolutions to guide public health actions,33 the incorporation of human251

activity predictors will become more importyant.58252
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Methods263

Known Betacoronavirus hosts264

We downloaded the data on bats hosts of Betacoronavirus from265

https://www.viralemergence.org/betacov on Apr. 2022,21 and filtered it to “known” hosts (established266

before the emergence of SARS-CoV-2) and “novel” hosts (confirmed through sampling and competence267

assays since the initial data collection). The original database was assembled by a combination of data268

mining and literature surveys, including automated alerts on the “bats” and “coronavirus” keywords to269

identify novel empirical evidence of bats-betacoronaviruses associations; this yielded a total of 126 known270

hosts, 47 of which were novel hosts. This host–virus list of interactions was obtained through a271

comprehensive aggregation of GenBank data as well as systematic literature searches,21,25 such that we272

have high confidence in its fitness for the purpose of inference at a large spatial scale.273

Bat occurrences274

We downloaded the rangemap of every current bat species that was classified as an empirically275

documented host of Betacoronavirus from the previous step, according to recent IUCN data.59 The IUCN276

data have been assembled to support wildlife conservation efforts, and therefore we do not expect that they277

are biased by wildlife disease sampling efforts or priority. The range maps were subsequently rasterized278

using the rasterize function from GDAL60 at a resolution of approximately 100kmx100km at the equator.279

For every pixel in the resulting raster where at least one bat host of Betacoronaviruswas present, we extract280

the species pool (list of all known bat hosts), which was used to calculate the following risk assessment281

components: bat phylogenetic diversity, bat compositional uniqueness, and predicted viral sharing risk.282

Bat phylogenetic diversity283

For every pixel, we measured Faith’s Phylogenetic Diversity61 based on a recent synthetic tree with robust284

time calibration, covering about 6000 mammalian species.62 Faith’s PD measures the sum of unique285

branches from an arbitrary root to a set of tips, and comparatively larger values indicate a more286

phylogenetic diverse species pool. We measured phylogenetic diversity starting from the root of the entire287

tree (and not from Chiroptera); this bears no consequences on the resulting values, since all branches288
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leading up to Chiroptera are only counted once per species pool, and (as we explain when describing the289

assembly of the composite risk map), all individual risk components are ranged in [0,1]. This measure290

incorporates a richness component, which we chose not to correct for; the interpretation of the291

phylogenetic diversity is therefore a weighted species richness, that accounts for phylogenetic292

over/under-dispersal in some places.293

Bat compositional uniqueness294

For every species pool, we measured its Local Contribution to Beta-Diversity;63 LCBD works from a295

species-data matrix (traditionally noted as 𝐘), where species are rows and sites are columns, and a value of296

1 indicates occurrence. We extracted the Y matrix assuming that every pixel represents a unique location,297

and following best practices64 transformed it using Hellinger’s distance to account for unequal bat298

richness at different pixels. The correction of raw community data is particularly important for two299

reasons: first, it prevents the artifact of richer sites having higher importance; second, it removes the effect300

of overall species richness, which is already incorporated in the phylogenetic diversity component. High301

values of LCBD indicate that the pixel has a community that is on average more dissimilar in species302

composition than what is expected knowing the entire matrix, i.e. a more unique community. Recent303

results by65 shows that LCBD measures are robust with regards to spatial scale, and are therefore304

applicable at the global scale.305

Viral sharing between hosts306

For all bat hosts of Betacoronavirus, we extracted their predicted viral sharing network, generated from a307

previously published generalized additive mixed model of virus sharing by a tensor function of308

phylogenetic distance and geographic range overlap across mammals.66 This network stores pairwise309

values of viral community similarity, measured for all hosts (to maintain consistency with teh310

phylogenetic diversity measure) across all viruses; therefore, we consider that it accounts for some overall311

similarity in the way hosts deal with viruses, and not only betacoronaviruses. There is empirical evidence312

that capacity for cross-species transmission even between divergent species is generally high,67 especially313

for beta-coronaviruses.14 To project viral sharing values into a single value for every pixel, we averaged the314

pairwise scores. High values of the average sharing propensity means that this specific extant bat315
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assemblage is likely to be proficient at exchanging viruses.316

Composite risk map317

To visualize the aggregated risk at the global scale, we combine the three individual risk components318

(phylogenetic diversity, compositional uniqueness, and viral sharing) using an additive color model.68 In319

this approach, every risk component gets assigned a component in the RGB color model (phylogenetic320

diversity is green, compositional uniqueness is red, and viral sharing is blue). In order to achieve a valid321

RGB measure, all components are re-scaled to the [0,1] interval, so that a pixel with no sharing, no322

phylogenetic diversity, and no compositional uniqueness is black, and a pixel with maximal values for323

each is white. This additive model conveys both the intensity of the overall risk, but also the nature of the324

risk as colors diverge towards combinations of values for three risk components. Out of the possible325

combinations, the most risky in terms or rapid diversification and spillover potential is high phylogenetic326

diversity and low viral sharing,69 in that this allows multiple independent host-virus coevolutionary327

dynamics to take place in the same location. In the colorimetric space, this correspond to yellow – because328

the HSV space is more amenable to calculations for feature extraction,70 we measured the risk level by329

calculating the angular distance of the hue of each pixel to a reference value of 60 (yellow), and weighted330

this risk level by the value component. Specifically, given a pixel with colorimetric coordinates (ℎ, 𝑠, 𝑣), its331

ranged weighted risk value is332

𝑣 × [1 −
|||atan (cos(rad(ℎ)), sin(rad(ℎ))) − 𝑋|||

2𝜋 ] ,

where X is atan (cos(rad(60)), sin(rad(60))), a constant approximately equal to 0.5235.333

Viral phylogeography and evolutionary diversification334

To next represent phylogeography of betacoronaviruses in bats, we aggregated and analyzed335

betacoronavirus sequence data. We used the following query to pull all Betacoronavirus sequence data336

from the GenBank Nucleotide database except SARS-CoV-2; (“Betacoronavirus”[Organism] OR337

betacoronavirus[All Fields]) NOT (“Severe acute respiratory syndrome coronavirus 2”[Organism] OR338

sars-cov-2[All Fields]). We added a single representative sequence for SARS-CoV-2 and manually curated339
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to remove sequences without the RNA-dependent RNA polymerase (RdRp) sequence or that contained340

words indicating recombinant or laboratory strains including “patent”, “mutant”, “GFP”, and341

“recombinant”. We filtered over-represented taxa including betacoronavirus 1, hCoV-OC43, Middle East342

respiratory syndrome coronavirus, Murine hepatitis virus, and hCoV-HKU1. Curated betacoronavirus343

RdRp sequences were then aligned using MAFFT71 v1.4.0 (Algorithm FFT-NS-2, Scoring matrix 200PAM /344

k=2, gap open penalty 1.53m offset value 0.123) and a maximum likelihood tree reconstructed in345

IQ-TREE72 v1.6.12 with ModelFinder73 ultrafast bootstrap approximation74 with a general time reversible346

model with empirical base frequencies and the 5-discrete-rate-category FreeRaye model of nucleotide347

substitution (GTR+F+R5).348

We first tested the hypothesis that hotspots of viral diversification would track hotspots of bat349

diversification. To do so, we plotted the number of known bat hosts (specifically only those included in the350

phylogeny, so there was a 1:1 correspondence between data sources) against the “mean evolutionary351

distinctiveness” of the associated viruses. To calculate this, we derived the fair proportions evolutionary352

distinctiveness75 for each of the viruses in the tree, then averaged these at the bat species level, projected353

these values onto their geographic distributions, and averaged across every bat found in a given pixel. As354

such, this can be thought of as a map of the mean evolutionary distinctiveness of the known viral355

community believed to be associated with a particular subset of bats present.356

Co-distribution of hosts and viral hotspots357

Subsequently, we tested the hypothesis that the biogeography of bat betacoronaviruses should track the358

biogeography of their hosts. To test this idea, we loosely adapted a method from,76,77 who proposed a359

phylogenetic method for the delineation of animal biogeographic regions. In their original method, a360

distance matrix - where each row or column represents a geographic raster’s grid cell, and the dissimilarity361

values are the “beta diversity similarity” of their community assemble - undergoes non-metric362

multidimensional scaling (NMDS); the first two axes of the NMDS are projected geographically using a363

four-color bivariate map. Here, we build on this idea with an entirely novel methodology. First, we364

measure the phylogenetic distance between the different viruses in the betacoronaviruses tree by using the365

cophenetic function in ape;78 subsequently, we take a principal components analysis of that distance366

matrix (readily interchangeable for NMDS in this case) to project the viral tree into an n-dimensional367

space. We then take the first two principal components and, as with the evolutionary distinctiveness368
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analysis, aggregated these to a mean host value and projected them using a four-color bivariate map.369

Data availability statement370

The code to reproduce these analyses, as well as the data (with the exception of the IUCN rangemaps,371

which must be downloaded from their website) are available in the viralemergence/betamap repository372

on GitHub.373
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Figure 1: Bat and betacoronavirus biogeographic regions. Phylogeography of bats (top) and viruses
(bottom) is categorized based on an analysis of bat distributions, paired with bat or virus phylogeny. The
different colors show tendencies to separate alongside the first two components of a PCoA. Note that the
PCoA for the bats and viruses are independent, and so cannot be compared directly – that being said, the
fact that different regions cluster in the same way across maps be directly compared.
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Figure 2: Bat and betacoronavirus diversity. Top panel: diversity of known bat hosts of
betacoronaviruses in our dataset. This map shows that the region with the largest number of possible hosts
is South-EasternAsia. Bottompanel: congruence between the evolutionary distinctiveness of the hosts (grey
to blue) and the viruses (grey to red). Darker areas have higher combined evolutionary distinctiveness for
the entire bat-virus system.
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Figure 3: Trivariate additivemapping of the components of risk. Viral sharing runs from yellow (low)
to blue (high); host phylogenetic diversity runs from pink (low) to high (green); and host compositional
uniqueness runs from cyan (low) to red (high). The GMTC suggests that the highest evolutionary potential
for emergence exists in unique and diverse host communities with low viral sharing, i.e. pixels around
yellow. All components within bat host ranges are scaled in brightness so that a pixel with no sharing, no
phylogenetic diversity, and no compositional uniqueness would be black, and a pixel with maximal values
for eachwould bewhite. The individual layers that compose this figure are given in supplementarymaterial.
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Figure 4: Evolutionary potential for zoonotic emergence of bat-origin betacoronaviruses. Risk is
a composite measure of the color value and angular distance to the yellow hue in fig. 3 (see Methods).
Darker pixels represent areas where the co-evolutionary mechanisms are likely to introduce a strong risk of
emergence.
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Figure 5: Overlap between evolutionary potential and ecological opportunity for zoonotic
emergence. Overlap of the percent of each pixel occupied by urbanized structures, representing the degree
of settlement, on the spillover risk map (where the risk comes only from wildlife, and ignores multi-hosts
chains of transmissions including non-bats hosts). Darker pixels correspond tomore risk, in that theGMTC-
derived risk of fig. 4 is high and the pixel is densely occupied by human populations.
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