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Pathogen evolution is one of the least predictable components of disease emergence, particularly in na-
ture. Here, building on principles established by the geographic mosaic theory of coevolution, we de-
velop a quantitative, spatially-explicit framework for mapping the evolutionary risk of viral emergence.
Driven by interest in diseases like SARS, MERS, and COVID-19, we examine the global biogeography
of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that
are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain pat-
terns like a unique pool of merbecoviruses in the Neotropics, a recently-discovered lineage of divergent
nobecoviruses inMadagascar, and–most importantly–hotspots of diversification in southeast Asia, sub-
Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events.
Our frameworkmay help identify hotspots of future risk that have also been previously overlooked, like
west Africa and the Indian subcontinent, and may more broadly help researchers understand how host
ecology shapes the evolution and diversity of pandemic threats.

Disease emergence is complex, and is driven not only by animal-human contact, but also by the under-
lying evolutionary dynamics in viral reservoirs.1 Although host richness is often used as a superficial
proxy for spillover risk,2–4 these approaches oversimplify the relevant interspecific heterogeneity in im-
munology, behavior, and other traits, and therefore overlook unique host pools that allow for the rapid
evolution of highly divergent viruses.5 In the case of generalist pathogens like betacoronaviruses, there
is conceptual and empirical support to the idea that these community-level mechanisms are even more
important,6 particularly given that cross-species transmission may, as a rule, structure viral evolution
more than co-divergencewith hosts.7 This creates a disconnect between coevolutionary theory andmost
existing ecological frameworks for mapping spillover risk.

The geographic mosaic theory of coevolution (GMTC) attempts to explicitly connect microevolution-
ary dynamics to the macroecology and biogeography of symbiotic interactions.8 The GMTC posits that
coevolutionary processes among pairs9 or complexes10 of species are structured in space by the rip-
pling effects of abiotic conditions onto evolutionary mechanisms, giving rise to fragmented systems
with different ecologies over large spatial extents.11 The GMTC predicts a spatial fragmentation of co-
evolutionary dynamics under the joint action of three processes:12 coevolutionary hot- and coldspots,
which appear when the intensity of interaction (in terms of reciprocal fitness consequences) varies spa-
tially; selection mosaics, wherein the intensity of selection varies across space, driven by both the biotic
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complexity of the community (locally diverse hosts and viruses are more biotically complex) and the lo-
cal favorability of the environment;13 and trait remixing, which occurs when coevolutionary dynamics
change when community-level functional traits change through meta-community dynamics.

Here, we apply the GMTC to explore and explain the global biogeography of betacoronaviruses, the
group that includes SARS-CoV, MERS-CoV, and SARS-CoV-2. In their bat reservoirs, coronaviruses
evolve through a mix of host jumps, recombination among disparate lineages, and, to a lesser degree,
co-divergence with their hosts—2a mix of mechanisms that creates a complex and nonlinear relation-
ship between host diversity and viral emergence. Working from a recently published database of bat
hosts of betacoronaviruses, we test whether spatial structure in bat-betacoronavirus coevolution is iden-
tifiable at a global scale. Aiming to explain these patterns, we develop a generalized framework for
applying the GMTC to host-virus interactions, with a specific emphasis on the potential to create inde-
pendent coevolutionary dynamics (and therefore spatial fragmentation in risk) through heterogeneity.
We develop a trivariate risk assessment system that connects each GMTCmechanism to a quantifiable
aspect of host-virus interactions: (i) viral sharing rates in host communities, representing the strength
of potential interaction between viruses and any one host (i.e., places where viruses undergo constant
host switching may be coevolutionary coldspots); (ii) the phylogenetic diversity of hosts, as a proxy for
variation in the immunological mechanisms that antagonize viruses (i.e., the selection mosaic); and
(iii) the local uniqueness of the bat community, representing the potential for viruses to be exposed to
novel host traits (e.g., variation in receptor sequences). Together, we argue that these can be used to
identify and map the evolutionary drivers that—in conjunction with transmission processes (e.g., viral
prevalence in reservoirs and animal-human contact rates)— determine disease emergence risk.

1

Results and Discussion

1.1. Bat and betacoronavirus biogeography are broadly consistent Most previous work has as-
sumed that the presence or richness of key groups of bat hosts are predictive of coronavirus diversity.2,3
Projecting bat and betacoronavirus phylogeny over space (fig. 1), we find support for the idea that bat
community assembly is directly responsible for a global mosaic of viral evolution. The distinct group-
ings (represented by different colors, symbolizing positions in a subspace formed by the first two phylo-
genetic principal components) are essentially equivalent between the two groups, and can be coarsely
delineated as (1) south and southeast Asia; (2) east Asia (including northern China), west Asia, and the
Mediterranean coast; (3) Eurasia above a northing of 40; and (4) Africa and Latin America. In some
cases, this diverges from expectations about coronavirus biogeography: for example, previous work
has rarely flagged India as a region of interest, but for both bats and betacoronaviruses, the subconti-
nent falls into the same regions as the southeast Asian peninsula (and indeed, the region is home to
known bat hosts of multiple betacoronavirus subgenera, including nobecoviruses, sarbecoviruses, and
merbecoviruses).3

Overall, these results suggest that the boundaries of bat and betacoronavirus biogeographic regions are
broadly consistent at a global scale; perfect matching between the biogeographic regions would have
indicated that the signal of virus distribution is fully predicted by bat hosts ranges. Areas for which
the biogeographic regions for bats and betacoronaviruses differ are primarily (i) southeast Asia and
southern China, and (ii) the Arabian peninsula, which are both regions where zoonotic transmission
has been documented (potentially driving a unique level of viral sampling effort that generates these
patterns). These spatially limited mismatches nonwithstanding, the large level of congruence may be
surprising, given that cross-species transmission may play a stronger role in coronavirus diversification
than cospeciation—2a property that would theoretically allow for substantial broad divergence in their
biogeography. However, host jumps at the family level or higher are relatively rare and significant events
in coronavirus evolutionary history;2,14 as a result, the mosaic of betacoronavirus phylogeography is
assembled from a set of overlapping smaller coevolutionary systems, superimposed in space and filtered
by the importance of different subgroups in local host communities. For example, the most speciose
and cosmopolitan family of bats, the vesper bats (Vespertilionidae), are considered the primary hosts of
the subgenusMerbecovirus (MERS-like viruses);3,14 but in the Americas, where merbecoviruses are the
only lineage present, they have only been found in other bat taxa (e.g., Molossidae, Phyllostomidae).15–18
At the coarsest scale, these heterogeneities are lost, and betacoronavirus biogeography tracks the deep
rifts in bat evolutionary history—but within broad regions, the component coevolutionary systemsmay
have very different dynamics.
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Figure 1 Bat and betacoronavirus biogeo-
graphic regions. Phylogeography of bats (top)
and viruses (bottom) is categorized based on an
analysis of bat distributions, paired with bat or
virus phylogeny. The different colors show ten-
dencies to separate alongside the first two com-
ponents of a PCoA. Note that the PCoA for the
bats and viruses are independent, and so can-
not be compared directly – that being said, the
fact that different regions cluster in the same
way across maps be directly compared.
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Figure 2 Bat and betacoronavirus diver-
sity. Top panel: diversity of known bat hosts
of betacoronaviruses in our dataset. This map
shows that the region with the largest number
of possible hosts is South-Eastern Asia. Bot-
tom panel: congruence between the evolution-
ary distinctiveness of the hosts (grey to blue)
and the viruses (grey to red). Darker areas have
higher combined evolutionary distinctiveness
for the entire bat-virus system.

1.2. Hotspots of bat and betacoronavirus biodiversity are distinct Bats, the second most diverse
groups of mammals, are found worldwide; gradients in their species richness generally track broader
patterns of mammal diversity,19 with a striking Neotropical hotspot (especially in the Amazon basin)
and a secondary hotspot centered in Indochina. These hotspots of bat diversity are generally presumed
to be hotspots of viral adaptive radiation, and therefore areas of concern for human health.2,20 However,
the hotspots of known bat betacoronavirus hosts show a distinct pattern, with primary hotspots (both in
terms of area and higher values) of host richness situated in southeast Asia, parts of southern Europe,
and to a lesser extent parts of Africa in the -25-0 range of latitudes (fig. 2; top). Although hundreds of
species likely host undiscovered betacoronaviruses, machine learning predictions have suggested that
these undiscovered reservoirs should follow the same diversity gradient.21 In principle, these hotspots of
locally-diverse, virus-rich bat communities should drive more adaptive diversification in their viruses.

However, we find that the global pattern of betacoronavirus phylogenetic distinctiveness is quite dis-
tinct from both bat host richness and phylogenetic distinctiveness (fig. 2; bottom). In contrast to the
sparsity of Neotropical betacoronavirus hosts, South and Central America have the most evolutionary
distinct hosts and viruses, followed by secondary hotspots in southeast Asia and the Rift Valley re-
gion have mostly distinct viruses. Some degree of sampling bias may contribute to these patterns: for
example, the Neotropics are one of the places where the fewest bat betacoronavirus sequences have
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been generated,22–24 resulting in a sparser phylogenetic tree, and artificially inflating distinctiveness;
conversely, disproportionate research effort in eastern China25 may have led to a more complete inven-
tory of the local diversity of coronaviruses, again inflating these metrics relative to underlying patterns.
Even accounting for these potential biases, though, there is obvious heterogeneity in betacoronavirus
evolutionary distinctiveness that is distinct from overall bat diversity.

Overall, these patterns recapitulate the evolutionary history of both the order Chiroptera and the genus
Betacoronavirus. Horseshoe bats (Rhinolophidae) include the reservoirs of the SARS-like viruses (sub-
genusSarbecovirus), the group of pandemic threats that have been of the greatest interest to researchers14
(and so have been sampled most intensively;).25 The hotspots of host richness and viral diversity in
southeast Asia—both of which are disproportionately high, considering the global landscape of bat
species richness—are almost entirely driven by viral adaptive radiation through host switching within
this clade3,21. In contrast, the Neotropical hotspot of viral distinctiveness is driven by isolation by host
vicariance. Out of the four main groups of betacoronaviruses, only merbecoviruses have been found in
animals in the Americas— an introduction that is generally presumed to be ancient.3,26 While compar-
atively understudied, New World merbecoviruses have been found in the ghost-faced bats (Mormoop-
idae), Neotropical leaf-nosed bats (Phyllostomidae), and free-tailed bats (Molossidae).15–18 The former
two groups and a clade of the latter are endemic to the Neotropics, while the explosive adaptive radi-
ations of the phyllostomids are responsible for the hotspot of bat diversity in the Amazon.27 Together,
these clades of NewWorld bats play host to a distinct regime of betacoronavirus coevolution.

Our approach is potentially limited by sampling bias: key hotspots identified by our model have, in-
deed, been sampled intensely following major zoonotic emergence events. In these areas, more beta-
coronavirus hosts will have been discovered, leading to higher overall diversity and potentially higher
sharing. Similarly, hotspots of evolutionary uniqueness - as in the Arabian peninsula - could reflect
much broader lineages that have only been sampled in focal areas for public health. While the discov-
ery of new branches of bat-betacoronavirus coevolution is certainly likely, and might change some of
the observed patterns, our framework is likely to be fairly robust: the 126 hosts in our study capture
nearly 10% of global bat diversity, and the underlying evolutionary patterns they represent are much
less sensitive to new information than any inferences about viral evolution.

1.3. Coevolutionary regimes structure evolutionary potential for zoonotic emergence The exis-
tence of well-defined cophylogenetic regions suggests that the bat-betacoronavirus system is spatially
fragmented enough to create divergent coevolutionary trajectories; in turn, this coevolutionary mosaic
may alter the risk of zoonotic emergence. These ideas are, respectively, supported by the existence of
hotspots of viral uniqueness and the diverse origins of human betacoronaviruses. Together, this frame-
work points to a predictable relationship between host community structure and coevolutionary pres-
sure: phylogeographic structure in bat hosts (and their diverse immune strategies;)28 creates a landscape
of selective pressure; the trajectory of viruses’ coevolutionary response is, in turn, constrained by their
opportunities for either specialization or diversification through host jumps and recombination.

Based on the geographic mosaic theory of coevolution, we developed a trivariate map of coevolutionary
pressure (fig. 3): (1) host phylogenetic diversity: a high diversity of evolutionary histories should expose
viruses tomore variation in host immune traits; (2) host community uniqueness: exposure to greater host
trait heterogeneity can drive viral diversification, and coevolving with more unique host communities
should create more unique branches of viral evolution; and (3) propensity for viral sharing: frequent
cross-species transmission may act as a buffer on selective pressure, while lower rates of exchange may
enable more simultaneous trajectories of viral specialization to coexist within a given community. We
combine global maps of all three to generate a map of coevolutionary regimes, where close colors rep-
resent similar risks, and paler pixels represent overall higher risk (see Methods). We find that these
regions do not neatly overlap with those defined in fig. 1 or fig. 2, reinforcing the notion that local-scale
coevolutionary mosaics can form within cophylogenetic regions.

The greatest evolutionary potential for zoonotic emergence exists where pathogen pools have a high ge-
netic diversity and high propensity for cross-species transmission. In our framework, emergence risk is
therefore maximized under higher phylogenetic diversity (viruses are exposed to different host clades),
higher host uniqueness (viruses are experiencing novel, heterogeneous host traits combinations), and
low tomediumviral sharing (host-virus pairs can coevolve independently, but divergent virusesmay still
have opportunities for recombination). In fig. 3, this corresponds to yellow areas (dynamics dominated
by low viral sharing, with equal contributions of selection mosaics and trait remixing; southeast Asia,
and the Indian sub-continent), green-yellow areas (dynamics with low viral sharing but dominated by
the selection mosaic effect of host diversity; sub-Saharan Africa), and red-yellow areas (dynamics with
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Figure 3 Trivariate additive mapping of
the components of risk. Viral sharing runs
from yellow (low) to blue (high); host phylo-
genetic diversity runs from pink (low) to high
(green); and host compositional uniqueness
runs from cyan (low) to red (high). The GMTC
suggests that the highest evolutionary potential
for emergence exists in unique and diverse host
communities with low viral sharing, i.e. pixels
around yellow. All components within bat host
ranges are scaled in brightness so that a pixel
with no sharing, no phylogenetic diversity, and
no compositional uniqueness would be black,
and a pixel withmaximal values for eachwould
be white. The individual layers that compose
this figure are given in supplementary mate-
rial.

low viral sharing but dominated by trait remixing in host communities; the Middle East). Translating
this axis of variation back into a univariate risk map (fig. 4) highlights that this evolutionary landscape
has a striking correspondence to regions where zoonotic betacoronaviruses have previously emerged.
Our findings align with predictions regarding the spatial location of cross-species transmission. These
locations not only pose a potential risk of viral jumps that could endanger human health but also pro-
vide valuable information for monitoring wildlife health. This could guide us to determine where and
what measures to implement for effectively monitoring wildlife and human betacoronavirus outbreaks
before they escalate to critical levels. Nevertheless, there are actually very few documented cases of
emergence events, and similarities could be some degree of coincidental.

Compared to approaches that map emergence risk based only on the number of known bat hosts of
betacoronaviruses, our framework suggests regions where high viral sharing dominates coevolutionary
dynamics—such as Latin America, or Eurasia above a northing of 30—would pose less of a relative risk
of zoonotic emergence. Nevertheless, areas of high host uniqueness coupled with high viral sharing
(red-to-pink in fig. 3) could create hotspots facilitated by viral codivergence. Our framework identifies
Madagascar, where most bat species are endemic following evolutionary divergence from sister species
in both African and Asian continents,29 as one such hotspot; interestingly, a recent study30 reported
a novel and highly divergent lineage of nobecoviruses from Madagascar-endemic pteropid bat species
(Pteropus rufus and Rousettus madagascariensis), again supporting the predictive power of the coevolu-
tionary framework.

1.4. Human landscapes filter the geography of emergence risk The relationship between the un-
derlying pathogen pool and emergence risk is mediated by both human-wildlife interfaces (the proba-
bility of spillover) and opportunities for onward horizontal transmission (the probability that spillovers
become epidemics)1. It must be noted that the assesment of risk based on the GMTCmechanisms does
not account for human presence; for this reason, it represents “potential” level of risk, which must be
re-evaluated in the light of human presence. As a proxy for both, we finally overlaid the risk component
from the composite map (see above) with the proportion of built land, as a proxy for a mix of habitat
disturbance, potential for bat synanthropy or contact with bridge hosts like livestock,31,32 and human
population density and connectivity1,33,34 (fig. 5). Accounting for these factors, most of South America
and Europe are at comparatively lower risk, as–although densely populated–settlements tend to be in
areas with lower potential risk. Conversely, regions like Malaysia and the northern coast of Australia
have a high evolutionary risk component, but should represent a relatively lower effective risk due to
low human density. However, southeast Asia, the Indian subcontinent, and scattered hotspots in sub-
SaharanAfrica are at high risk due to the overlap betweenhumanpopulations andnatural opportunities
for cross-species transmission of betacoronaviruses.

Reassuringly, these predictions correspond to the geographic origins of the three bat-origin coronaviruses
that have recently emerged in human populations. While available information puts the spillover of
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Figure 4 Evolutionary potential for
zoonotic emergence of bat-origin beta-
coronaviruses. Risk is a composite measure
of the color value and angular distance to the
yellow hue in fig. 3 (see Methods). Darker pix-
els represent areas where the co-evolutionary
mechanisms are likely to introduce a strong
risk of emergence.

Figure 5 Overlap between evolutionary
potential and ecological opportunity for
zoonotic emergence. Overlap of the per-
cent of each pixel occupied by urbanized struc-
tures, representing the degree of settlement,
on the spillover risk map (where the risk
comes only from wildlife, and ignores multi-
hosts chains of transmissions including non-
bats hosts). Darker pixels correspond to more
risk, in that the GMTC-derived risk of fig. 4 is
high and the pixel is densely occupied by hu-
man populations.
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SARS-CoV-2 in a live animal market in Wuhan, China, the ultimate origin of the virus is almost cer-
tainly in a divergent lineage of sarbecoviruses from Indochina that was poorly characterized prior to
the pandemic.22–24 Similarly, the SARS-CoV outbreak began in Guangdong province in 2002, reaching
humans through small carnivore bridge hosts, but was eventually traced back to a set of likely progen-
itor viruses found in cave-dwelling horseshoe bats in Yunnan province;35 nearby, antibody evidence
has indicated human exposure to SARS-like viruses.36 MERS-CoV was first detected in Jordan, but is
widespread in camels in East Africa and the Middle East, and may have reached its bridge host decades
earlier than originally supposed;37 as a result, the geography of the original bat-to-camel transmission
is still widely regarded as uncertain. All of these are broadly consistent with the risk factors we identify.
Notably, India and west Africa are additional hotspots that have yet to experience the emergence of a
bat coronavirus into human populations, but may still be at risk—particularly given known gaps in bat
surveillance,25 and a dense population in both regions with global connectivity. In any of these regions,
surveillance on viral reservoirs can be paired with targeted monitoring of high-risk human populations
(i.e., those with regular wildlife contact)38 for maximum impact.

2

Conclusion

Bats emerged around 64 million years ago, and are one of the most diverse mammalian orders, with
more than 1,400 estimated species.39,40 They exhibit a broad variety of habitat use, behaviour, and
feeding strategies, putting them at key positions in the delivery and provisioning of several ecosys-
tem services, tied to important ecosystem-derived benefits to humans.41 Over two-thirds of bats are
known to be either obligate or facultative insectivores, therefore actively contributing for agricultural
pest control,42,43 and vectors of pathogens that put a risk on human health;44,45 some other species are
essential links inmany seed-dispersal networks.46 However, many of these species face a high risk of ex-
tinction, particularly given persecution and killings that sometimes follows frommessaging about their
role in disease emergence. Areas where bats, viruses, and humans co-occur are not always hotspots of
risk for human heath; as such, developing more precise ways to map zoonotic hazards can help bats
and humans coexist safely, and support the conservation of these important and unique animals.

Here, we propose a simple framework with broad explanatory power that helps contextualize discov-
eries like highly divergent nobecoviruses in Madagascar and the once-neglected adaptive radiation of
sarbecoviruses in the Indochinese peninsula. In doing so, it advances ecological theory beyond the cur-
rent state of the art for globalmaps of emergence risk. For example, previous studies that have used host
richness as a proxy have predicted a high diversity of unsampled bat viruses,20 bat coronaviruses,2 and
even specifically betacoronaviruses21 in both the Amazon and southeast Asia. While we find that both
regions are characterized by unique and diverse communities of both hosts and viruses, our framework
is able to identify key differences between the two systems. We find that the merbecovirus complex
in Latin America has been a unique branch of evolution separate from the rest of the global pool, but
with limited potential for viral diversification— a finding that is supported by previous work indicat-
ing a higher rate of codivergence in Latin America.2,47 In contrast, in southeast Asia, host richness
and viral distinctiveness are high but sharing is low; this suggests a different type of evolutionary dy-
namics that could generate high local diversity of viruses through host switching and viral recombi-
nation (see e.g.,14 as well as the discovery of recombinant viruses with genetic material from both the
SARS-CoV and SARS-CoV-2 branches of the Sarbecovirus lineage).48Both of these regions are prior-
ity areas for sampling, especially given predictions that they contain many bat hosts of undiscovered
betacoronaviruses.21,25 However, both the evolutionary and ecological aspects of emergence risk are
higher in southeast Asia—a fact that will only becomemore relevant, as bats track shifting climates and
exchange viruses with other species, creating a hotspot of elevated cross-species transmission unique
to the region.33,49

Our trivariate additive mapping of components of risk (fig. 3) aims to elicit the complexity of spatial
cross-species transmission risk beyond the mere presence or absence of the pathogen host in a specific
location. By considering coevolutionary factors such as viral sharing and host uniqueness, we suggest
insights that can aid in identifying potential locations for surveillance of betacoronavirus circulation
and assessing the risk of cross-species transmission to other mammals. In communities characterized
by diverse but unique host populations, with limited viral sharing between them, we could encounter
viruses that specialize in targeting the immune system of specific hosts. This implies a low likelihood of
infecting novel hosts but, once locally introduced into a new host (either a new species, or an immuno-
logically naïve population), the specialized virus could spread relatively easily due to encountering little
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immune resistance.50 With the right combination of viral traits, such as low disease-induced mortality
or high transmission rate, this could lead to successfully spread within the new host community. How-
ever, while high adaptation to a specific host can be advantageous, it may also lead to maladaptation
when the pathogen encounters a new unsuitable host, potentially resulting in its extinction.

Bats—and the spillover of their viruses—are also sensitive to anthropogenic factors others than climate
change, including deforestation and other kinds of habitat loss, increased stress, and greater contact
with potential bridge hosts like domesticated species.31,51–53 This represents a challenge for both con-
servation strategies and pandemic prevention,54 but identifying areas at risk, and protecting the health
of bats and ecosystemswithin those zones, can be awin-win intervention for both.55–57 Aswe scale these
predictions down in space to finer spatial resolutions to guide public health actions,33 the incorporation
of human activity predictors will become more importyant.58
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3

Methods

3.1. Known Betacoronavirus hosts We downloaded the data on bats hosts of Betacoronavirus from
https://www.viralemergence.org/betacov on Apr. 2022,21 and filtered it to “known” hosts (estab-
lished before the emergence of SARS-CoV-2) and “novel” hosts (confirmed through sampling and com-
petence assays since the initial data collection). The original database was assembled by a combination
of data mining and literature surveys, including automated alerts on the “bats” and “coronavirus” key-
words to identify novel empirical evidence of bats-betacoronaviruses associations; this yielded a total
of 126 known hosts, 47 of which were novel hosts. This host–virus list of interactions was obtained
through a comprehensive aggregation of GenBank data as well as systematic literature searches,21,25
such that we have high confidence in its fitness for the purpose of inference at a large spatial scale.

3.2. Bat occurrences We downloaded the rangemap of every current bat species that was classified
as an empirically documented host of Betacoronavirus from the previous step, according to recent IUCN
data.59 The IUCN data have been assembled to support wildlife conservation efforts, and therefore we
do not expect that they are biased by wildlife disease sampling efforts or priority. The range maps were
subsequently rasterized using the rasterize function from GDAL60 at a resolution of approximately
100kmx100km at the equator. For every pixel in the resulting raster where at least one bat host of
Betacoronavirus was present, we extract the species pool (list of all known bat hosts), which was used
to calculate the following risk assessment components: bat phylogenetic diversity, bat compositional
uniqueness, and predicted viral sharing risk.

3.3. Bat phylogenetic diversity For every pixel, we measured Faith’s Phylogenetic Diversity61 based
on a recent synthetic tree with robust time calibration, covering about 6000 mammalian species.62
Faith’s PD measures the sum of unique branches from an arbitrary root to a set of tips, and compar-
atively larger values indicate a more phylogenetic diverse species pool. We measured phylogenetic di-
versity starting from the root of the entire tree (and not from Chiroptera); this bears no consequences
on the resulting values, since all branches leading up to Chiroptera are only counted once per species
pool, and (as we explain when describing the assembly of the composite risk map), all individual risk
components are ranged in [0,1]. This measure incorporates a richness component, which we chose not
to correct for; the interpretation of the phylogenetic diversity is therefore a weighted species richness,
that accounts for phylogenetic over/under-dispersal in some places.

3.4. Bat compositional uniqueness For every species pool, we measured its Local Contribution to
Beta-Diversity;63 LCBD works from a species-data matrix (traditionally noted as 𝐘), where species are
rows and sites are columns, and a value of 1 indicates occurrence. We extracted the Y matrix assum-
ing that every pixel represents a unique location, and following best practices64 transformed it using
Hellinger’s distance to account for unequal bat richness at different pixels. The correction of raw com-
munity data is particularly important for two reasons: first, it prevents the artifact of richer sites having
higher importance; second, it removes the effect of overall species richness, which is already incor-
porated in the phylogenetic diversity component. High values of LCBD indicate that the pixel has a
community that is on average more dissimilar in species composition than what is expected knowing
the entire matrix, i.e. a more unique community. Recent results by65 shows that LCBD measures are
robust with regards to spatial scale, and are therefore applicable at the global scale.

3.5. Viral sharing between hosts For all bat hosts of Betacoronavirus, we extracted their predicted
viral sharing network, generated from a previously published generalized additivemixedmodel of virus
sharing by a tensor function of phylogenetic distance and geographic range overlap across mammals.66
This network stores pairwise values of viral community similarity, measured for all hosts (to maintain
consistency with teh phylogenetic diversity measure) across all viruses; therefore, we consider that it
accounts for some overall similarity in the way hosts deal with viruses, and not only betacoronaviruses.
There is empirical evidence that capacity for cross-species transmission even between divergent species
is generally high,67 especially for beta-coronaviruses.14 To project viral sharing values into a single value
for every pixel, we averaged the pairwise scores. High values of the average sharing propensity means
that this specific extant bat assemblage is likely to be proficient at exchanging viruses.
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3.6. Composite risk map To visualize the aggregated risk at the global scale, we combine the three
individual risk components (phylogenetic diversity, compositional uniqueness, and viral sharing) using
an additive color model.68 In this approach, every risk component gets assigned a component in the
RGB color model (phylogenetic diversity is green, compositional uniqueness is red, and viral sharing
is blue). In order to achieve a valid RGB measure, all components are re-scaled to the [0,1] interval, so
that a pixel with no sharing, no phylogenetic diversity, and no compositional uniqueness is black, and
a pixel with maximal values for each is white. This additive model conveys both the intensity of the
overall risk, but also the nature of the risk as colors diverge towards combinations of values for three
risk components. Out of the possible combinations, the most risky in terms or rapid diversification and
spillover potential is high phylogenetic diversity and low viral sharing,69 in that this allows multiple
independent host-virus coevolutionary dynamics to take place in the same location. In the colorimetric
space, this correspond to yellow – because the HSV space is more amenable to calculations for feature
extraction,70 wemeasured the risk level by calculating the angular distance of the hue of each pixel to a
reference value of 60 (yellow), and weighted this risk level by the value component. Specifically, given
a pixel with colorimetric coordinates (ℎ, 𝑠, 𝑣), its ranged weighted risk value is

𝑣 × [1 −
|||atan (cos(rad(ℎ)), sin(rad(ℎ))) − 𝑋|||

2𝜋 ] ,

where X is atan (cos(rad(60)), sin(rad(60))), a constant approximately equal to 0.5235.

3.7. Viral phylogeography and evolutionary diversification To next represent phylogeography of
betacoronaviruses in bats, we aggregated and analyzed betacoronavirus sequence data. We used the
following query to pull all Betacoronavirus sequence data from the GenBank Nucleotide database ex-
cept SARS-CoV-2; (“Betacoronavirus”[Organism] OR betacoronavirus[All Fields]) NOT (“Severe acute
respiratory syndrome coronavirus 2”[Organism] OR sars-cov-2[All Fields]). We added a single rep-
resentative sequence for SARS-CoV-2 and manually curated to remove sequences without the RNA-
dependent RNA polymerase (RdRp) sequence or that contained words indicating recombinant or lab-
oratory strains including “patent”, “mutant”, “GFP”, and “recombinant”. We filtered over-represented
taxa including betacoronavirus 1, hCoV-OC43, Middle East respiratory syndrome coronavirus, Murine
hepatitis virus, and hCoV-HKU1. Curated betacoronavirus RdRp sequences were then aligned using
MAFFT71 v1.4.0 (Algorithm FFT-NS-2, Scoring matrix 200PAM / k=2, gap open penalty 1.53m offset
value 0.123) and amaximum likelihood tree reconstructed in IQ-TREE72 v1.6.12withModelFinder73 ul-
trafast bootstrap approximation74 with a general time reversible model with empirical base frequencies
and the 5-discrete-rate-category FreeRaye model of nucleotide substitution (GTR+F+R5).

We first tested the hypothesis that hotspots of viral diversification would track hotspots of bat diversi-
fication. To do so, we plotted the number of known bat hosts (specifically only those included in the
phylogeny, so therewas a 1:1 correspondence between data sources) against the “mean evolutionary dis-
tinctiveness” of the associated viruses. To calculate this, we derived the fair proportions evolutionary
distinctiveness75 for each of the viruses in the tree, then averaged these at the bat species level, projected
these values onto their geographic distributions, and averaged across every bat found in a given pixel.
As such, this can be thought of as a map of the mean evolutionary distinctiveness of the known viral
community believed to be associated with a particular subset of bats present.

3.8. Co-distribution of hosts and viral hotspots Subsequently, we tested the hypothesis that the
biogeography of bat betacoronaviruses should track the biogeography of their hosts. To test this idea,
we loosely adapted a method from,76,77 who proposed a phylogenetic method for the delineation of
animal biogeographic regions. In their original method, a distance matrix - where each row or column
represents a geographic raster’s grid cell, and the dissimilarity values are the “beta diversity similarity”
of their community assemble - undergoes non-metric multidimensional scaling (NMDS); the first two
axes of the NMDS are projected geographically using a four-color bivariate map. Here, we build on
this idea with an entirely novel methodology. First, we measure the phylogenetic distance between the
different viruses in the betacoronaviruses tree by using the cophenetic function in ape;78 subsequently,
we take a principal components analysis of that distance matrix (readily interchangeable for NMDS in
this case) to project the viral tree into an n-dimensional space. We then take the first two principal
components and, as with the evolutionary distinctiveness analysis, aggregated these to a mean host
value and projected them using a four-color bivariate map.
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3.9. Data availability statement The code to reproduce these analyses, as well as the data (with the
exception of the IUCN rangemaps, which must be downloaded from their website) are available in the
viralemergence/betamap repository on GitHub.
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