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Abstract: Ecological networks are increasingly studied at large spatial scales, expanding their
focus from a conceptual tool for community ecology into one that also adresses questions in
biogeography and macroecology. This effort is supported by increased access to standardized
information on ecological networks, in the form of openly accessible databases. Yet, there has
been no systematic evaluation of the fitness for purpose of these data to explore synthesis ques-
tions at very large spatial scales. In particular, because the sampling of ecological networks
is a difficult task, they are likely to not have a good representation of the diversity of Earth’s
bioclimatic conditions, likely to be spatially aggregated, and therefore unlikely to achieve broad
representativeness. In this paper, we analyze over 1300 ecological networks in the mangal.io
database, and discuss their coverage of climates, and the geographic areas in which there is a
deficit of data on ecological networks. Taken together, our results suggest that while some infor-
mation about the global structure of ecological networks is available, it remains fragmented over
space, with further differences by types of ecological interactions. This causes great concerns
both for our ability to transfer knowledge from one region to the next, but also to forecast the
structural change in networks under climate change.



Ecological networks are a useful representation of ecological systems in which species or organ-1

isms interact (Heleno et al. 2014; Delmas et al. 2018). In addition to using the established math-2

ematical framework of graph theory to describe the structure of species interactions, network3

ecology has related the structural and ecological properties of networks (Proulx, Promislow,4

and Phillips 2005; Poulin 2010). Networks often allow to link disconnected scales in ecology5

(Guimarães 2020), and in particular are powerful tools to bridge data on populations to ecosys-6

tem properties (Loreau 2010; Jordano and Bascompte 2013; Gonzalez et al. 2020). Recently,7

the interest in the dynamics of ecological networks across large temporal scales (Baiser et al.8

2019; Tylianakis and Morris 2017), and along environmental gradients (Welti and Joern 2015;9

Pellissier et al. 2017; Trøjelsgaard and Olesen 2016), has increased. As ecosystems are chang-10

ing rapidly, networks are at risk of undergoing rapid and catastrophic changes to their structure:11

for example by invasion leading to a collapse (Magrach et al. 2017; Strong and Leroux 2014),12

or by a “rewiring” of interactions among existing species (Hui and Richardson 2019; Guiden13

et al. 2019; Bartley et al. 2019). Simulation studies suggest that knowing the structure of the14

extant network, i.e. being able to map all interactions between species, is not sufficient (Thomp-15

son and Gonzalez 2017) to predict the effects of external changes; indeed, data on the species16

occurrences and traits, as well as local extant and projected climate, are also required.17

This change in scope, from describing ecological networks as local, static objects, to dynamical18

ones that vary across space and time, has prompted several methodological efforts. First, tools19

to study spatial, temporal, and spatio-temporal variation of ecological networks in relationship20

to environmental gradients have been developed and continuously expanded (Poisot et al. 2012,21

2017; Poisot, Stouffer, and Gravel 2015). Second, there has been an improvement in large-22

scale data-collection, through increased adoption of molecular biology tools (Eitzinger et al.23

2019; Evans et al. 2016; Makiola et al. 2019) and crowd-sourcing of data collection (Bahlai24

and Landis 2016; Roy et al. 2016; Pocock et al. 2015). Finally, there has been a surge in the25

development of tools allowing to infer species interactions (Morales-Castilla et al. 2015; Dallas,26

Park, and Drake 2017) based on limited but complementary data on network properties (Stock et27

al. 2017), species traits (Gravel et al. 2013; Desjardins-Proulx et al. 2017; Brousseau, Gravel,28

and Tanya Handa 2017; Bartomeus et al. 2016), and environmental conditions (Gravel et al.29
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2018). These latter approaches tend to perform well in data-poor environments (Beauchesne30

et al. 2016), and can be combined through ensemble modeling or model averaging to generate31

more robust predictions (Pomeranz et al. 2018; Becker et al. 2020). The task of inferring32

interactions is particularly important because ecological networks are difficult to adequately33

sample in nature (Jordano 2016a, 2016b; Banašek-Richter, Cattin, and Bersier 2004; Chacoff et34

al. 2012; Gibson et al. 2011). The common goal to these efforts is to facilitate the prediction35

of network structure, particularly over space (Poisot, Gravel, et al. 2016; Albouy et al. 2019)36

and into the future (Albouy et al. 2014), to appraise the response of that structure to possible37

environmental changes.38

These disparate methodological efforts share another important trait: their continued success39

at predicting network structure depends both on state-of-the-art data management, and on the40

availability of data that are representative of the area we seek to model. Novel quantitative tools41

demand a higher volume of network data; novel collection techniques demand powerful data42

repositories; novel inference tools demand easier integration between different types of data,43

including but not limited to: interactions, species traits, taxonomy, occurrences, and local bio-44

climatic conditions. Macroecological studies of networks have demonstrated the importance of45

integrating network structure with past and current climate data (Dalsgaard et al. 2013; Schle-46

uning et al. 2014; Martín-González et al. 2015), and that even when considering large scale47

gradients, similar types of interactions can behave in similar ways, in that they respond to the48

same drivers (Zanata et al. 2017). That being said, network-based measures of community49

structure often bring complementary information when compared to other sources of data (like50

abundance; Dalsgaard et al. 2017).51

In short, advancing the science of ecological networks requires us not only to increase the volume52

of available data, but also to pair these data with ecologically relevant metadata. Such data53

should also be made available in a way that facilitates programmatic interaction (i.e. where the54

data are processed automatically and without the need for manual curation) so that they can be55

used by reproducible data analysis pipelines. Poisot, Baiser, et al. (2016) introduced mangal.io56

as the first step in this direction. In the years since the tool was originally published, we continued57

the development of data representation, amount and richness of metadata, and digitized and58
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standardized as much biotic interactions data as we could find. The second major release of59

this database contains over 1300 networks, 120000 interactions across close to 7000 taxa, and60

represents what is to our best knowledge the most complete collection of species interactions61

available.62

Here we ask if the current Mangal database is fit for global-scale synthesis research into ecolog-63

ical networks. A recent study by Cameron et al. (2019) suggest that food webs are un-evenly64

documented globally, but focused onmetadata as opposed to actual datasets. Here, we conclude65

that interactions over most of the planet’s surface are poorly described, despite an increasing66

amount of available data, due to temporal and spatial biases in data collection and digitization.67

In particular, Africa, South America, and most of Asia have very sparse coverage. This sug-68

gests that synthesis efforts on the worldwide structure or properties of ecological networks will69

be weaker within these areas. To improve this situation, we should digitize available network70

information and prioritize sampling towards data-poor locations.71

Global trends in ecological networks description72

Network coverage is accelerating but spatially aggregated73

[Figure 1 about here.]74

The earliest recorded ecological networks date back to the late nineteenth century, with a strong75

increase in the rate of collection around the 1980s (fig. 1). Although the volume of available76

networks has increased over time, the sampling of these networks in space has been uneven.77

In fig. 2, we show that globally, network collection is biased towards the Northern hemisphere,78

and that different types of interactions have been sampled in different places. As such, it is very79

difficult to find a spatial area of sufficiently large size in which we have networks of predation,80

parasitism, and mutualism. The inter-tropical zone is particularly data-poor, either because data81

producers from the global South correctly perceive massive re-use of their data by Western82

world scientists as a form of scientific neo-colonialism (as advanced by Mauthner and Parry83

2013), thereby providing a powerful incentive against their publication, or because ecological84
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networks are subject to the same data deficit that is affecting all fields on ecology in the tropics85

(Collen et al. 2008). As Bruna (2010) identified almost ten years ago, improved data deposition86

requires an infrastructure to ensure they can be repurposed for future research, which we argue87

is provided by mangal.io for ecological interactions.88

[Figure 2 about here.]89

Network size did not increase over time90

In fig. 3, we report the changes in the number of nodes (usually species, sometimes functional91

or trophic groupings) in ecological networks over time - interestingly, even though the field of92

network ecology itself is growing (Borrett, Moody, and Edelmann 2014), the overwhelming93

majority of networks collected to date remain under a hundred species. This is most likely94

explained, not by the fact that ecological networks are necessarily small, but by the immense95

effort required to assemble these datasets (Jordano 2016b). Indeed, Jordano (2016a) emphasizes96

that the correct empirical description of ecological networks requires extensive field work in97

addition to a profound knowledge of the natural history of the system. These multiple constraints98

contribute to keeping network size small, and might not be indicative of low data quality.99

[Figure 3 about here.]100

Different interaction types have been studied in different biomes101

Whittaker (1962) suggested that natural communities can be partitioned across biomes, largely102

defined as a function of their relative precipitation and temperature. For all networks for which103

the latitude and longitude were known, we extracted the value temperature (BioClim1, yearly104

average) and precipitation (BioClim12, total annual) from the WorldClim 2 data at a resolution105

of 10 arc minutes (Fick and Hijmans 2017). Using these we can plot every network on the map of106

biomes drawn byWhittaker (1962) (note that because the frontiers between biomes are not based107

on any empirical or systematic process, they have been omitted from this analysis). In fig. 4, we108

show that even though networks capture the overall diversity of precipitation and temperature,109
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types of networks have been studied in sub-sections of the biomes space only. Specifically, par-110

asitism networks have been studied in colder and drier climates; mutualism networks in wetter111

climates; predation networks display less of a bias. Interestingly, some combinations of temper-112

ature and precipitation that are abundant on Earth (darker shading) are not represented in our113

network dataset, which suggests that we lack knolwedge of some widespread biomes.114

[Figure 4 about here.]115

To scale this analysis up to the 19 BioClim variables in Fick and Hijmans (2017), we extracted116

the position of every network in the bioclimatic space, ranged them so that they have mean of117

0 and unit variance, and conducted a principal component analysis on the scaled bioclimatic118

variables. In fig. 5, we projected the sampling locations in the resulting subspace formed by119

the first two principal components, which capture well over 75% of the total variance in the 19120

bioclimatic variables. This ordination has a number of interesting properties. First, the differ-121

ent types of networks occupy different environmental combinations, which largely matches the122

results of fig. 4. Second, the space is more scarcely sampled by networks that contain either123

mostly predatore or mostly mutualistic interactions – although they do cover a larger part of the124

space, the distance between them is much greater than compared to parasitism.125

[Figure 5 about here.]126

In fig. 6, we measure the Euclidean distance to the centroid of the space for every network.127

Mutualistic interactions tend to have values that are higher than predation, which are themselves128

mostly higher than parasitism. This suggests a potential bias in that globally, as the growth of129

digitized ecological networks was largely driven by parasitic interactions fig. 1, the environments130

in which they have been sampled have became over-represented.131

[Figure 6 about here.]132

Some locations on Earth have no climate analog133

In figures fig. 7, we represent the environmental distance between every pixel covered by Bio-134

Clim data, and the three networks that were sampled in the closest environmental conditions135
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(this amounts to a k nearest neighbors with k = 3). In short, higher distances correspond to136

pixels on Earth for which no climate analog network exists, whereas the darker areas are well137

described. It should be noted that the three types of interactions studied here (mutualism, par-138

asitism, predation) have regions with no analogs in different locations. In short, it is not that139

we are systematically excluding some areas, but rather than some type of interactions are more140

studied in specific environments. This shows how the lack of global coverage identified in fig. 4,141

for example, can cascade up to the global scale. These maps serve as an interesting measure of142

the extent to which spatial predictions can be trusted: any extrapolation of network structure in143

an area devoid of analogs should be taken with much greater caution than an extrapolation in an144

area with many similar networks.145

[Figure 7 about here.]146

Conclusions147

For what purpose are global ecological network data fit?148

What can we achieve with our current knowledge of ecological networks? The overview pre-149

sented here shows a large and detailed dataset, compiled from almost every major biome on150

Earth. It also displays our failure as a community to include some of the most threatened and151

valuable habitats in our work. Gaps in any dataset create uncertainty when making predictions152

or suggesting causal relationships. This uncertainty must be measured by users of these data, es-153

pecially when predicting over the “gaps” in space or climate that we have identified. We are not154

making any explicit recommendations for synthesis workflows. Rather we argue that this needs155

to be a collective process, a collaboration between data collectors (who understand the deficien-156

cies of these data) and data analysts (who understand the needs and assumptions of network157

methods).158

One line of research that we feel can confidently be pursued lies in extrapolating the structure of159

ecological networks over gradients, not at the level of species and their interactions, but at that of160

the community. Mora et al. (2018) revealed that all food webs are built upon the same structural161
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backbone, which is in part due to strong evolutionary constraints on the establishment of species162

interactions (Dalla Riva and Stouffer 2015); in other words, most networks are expected to be163

variations on a shared theme, and this facilitates the task of predicting the overarching struc-164

ture greatly. Finally, this approach to prediction which neglects the composition of networks is165

justified by the observation that network structure tends to be maintained at very large spatial166

scales even in the presence of strong compositional turnover (Dallas and Poisot 2017; Kemp167

et al. 2017). In short, the invariance of some network properties allows examining how “eco-168

logical networks” changes, as abstract objects, over time and space. One thing that the current169

state of the data does not always allow is to examine how a specific group of species (i.e. when170

taxonomic turnover becomes important) would react, in its interactions, to environmental gra-171

dients. This is an important research question, and we think that spatially replicated sampling172

of networks in the future would help with generating adequate data to address it in a synthetic173

way.174

Can we predict the future of ecological networks under climate change?175

Perhaps unsurprisingly, most of our knowledge on ecological networks is derived from data that176

were collected after the 1990s (fig. 1). This means that we have worryingly little information177

on ecological networks before the acceleration of the climate crisis, and therefore lack a robust178

baseline. Dalsgaard et al. (2013) provide strong evidence that the extant shape of ecological net-179

works emerged in part in response to historical trends in climate change. The lack of reference180

data before the acceleration of the effects of climate change is of particular concern, as we may181

be deriving intuitions on ecological network structure and assembly rules from networks that182

are in the midst of important ecological disturbances. Although there is some research on the183

response of co-occurrence and indirect interactions to climate change (Araújo et al. 2011; Los-184

apio and Schöb 2017), these are a far cry from actual direct interactions; similarly, the data on185

“paleo-foodwebs,” i.e. from deep evolutionary time (Muscente et al. 2018; Yeakel et al. 2014;186

Nenzén, Montoya, and Varela 2014) represent the effect of more progressive change, and may187

not adequately inform us about the future of ecological networks under severe climate change.188

However, though we lack baselines against which to measure the present, as a community we are189
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in a position to provide one for the future. Climate change will continue to have important im-190

pacts on species distributions and interactions for at least the next century. The Mangal database191

provides a structure to organize and share network data, creating a baseline for future attempts192

to monitor and adapt to biodiversity change.193

Possibly more concerning is the fact that the spatial distribution of sampled networks shows a194

clear bias towards the Western world, specifically Western Europe and the Atlantic coasts of195

the USA and Canada (fig. 2). This problem can be somewhat circumvented by working on196

networks sampled in places that are close analogs of those without direct information (almost197

all of Africa, most of South America, a large part of Asia). However, fig. 7 suggests that this198

approach will rapidly be limited: the diversity of bioclimatic combinations on Earth leaves us199

with some areas lacking suitable analogs. These regions are expected to bear the worst of the200

socio-economical (e.g. Indonesia) or ecological (e.g. polar regions) consequences of climate201

change. Cameron et al. (2019) reached a similar conclusion by focusing on food webs, and202

our analysis suggests that this worrying trend is, in fact, one that is shared by almost all types203

of interactions. All things considered, our current knowledge about the structure of ecological204

networks at the global scale leaves us under-prepared to predict their response to a warming205

world. From the limited available evidence, we can assume that ecosystem services supported206

by species interactions will be disrupted (Giannini et al. 2017), in part because the mismatch207

between interacting species will increase (Damien and Tougeron 2019) alongside the climatic208

debt accumulated within interactions (Devictor et al. 2012).209

Active development and data contribution210

This is an open-source project: all data and all code supporting this manuscript are available211

on the Mangal project GitHub organization, and the figures presented in this manuscript are212

themselves packaged as a self-contained analysis which can be run at any time. We hope that213

the success of this project will encourage similar efforts within other parts of the ecological214

community. Besides, we hope that this project will encourage the recognition of the contribution215

that software creators make to ecological research.216

One possible avenue for synthesis work, including the contribution of new data to Mangal, is217
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the use of these published data to supplement and extend existing ecological network data. This218

“semi-private” ecological synthesis could begin with new data collected by authors – for exam-219

ple, a host-parasite network of lake fish in Africa, or a pollination network of hummingbirds in220

Brazil. Authors could then extend their analyses by including a comparison to analogous data221

made public in Mangal. Upon the publication of the research paper, the original data could be222

uploaded to Mangal. This enables the reproducibility of this particular published paper. Even223

more powerfully, it allows us to build a future of dynamic ecological analyses, wherein analyses224

are automatically re-done as more data get added. This would allow a sort of continuous assess-225

ment of proposed ecological relationships in network structure. This cycle of data discovery and226

reuse is an example of the Data Life Cycle (Michener 2015) and represents one way to practice227

ecological synthesis.228

The idea of continuously updated analyses is very promising. Following the template laid out229

byWhite et al. (2019) and Yenni et al. (2019), it is feasible to update a series of canonical analy-230

ses any time the database grows, to produce a living, automated synthesis of ecological networks231

knowledge. To this end, theMangal database has been integratedwith EcologicalNetworks.jl232

(Poisot, Belisle, et al. 2019), which allows the development of flexible network analysis pipelines.233

One immediate target would be to borrow the methodology from Carlson et al. (2019), and pro-234

vide an estimate of the sampling effort required to accurately describe combinations of interac-235

tion types and bioclimatic conditions at various places on Earth, to provide recommendations on236

sampling effort allocation. Tightening the integration between infrastructure, data, and models,237

contributes to building the capacity of our field to bring about iterative near-term forecasting of238

ecological network structure (Dietze et al. 2018).239

What problems would more data solve?240

As the amount of empirical evidence grows, so too should our understanding of existing relation-241

ships between network properties, between networks properties and space, and the interpretation242

to be drawn from them. But what information would the structure of the food web from a pond243

bring to our understanding of the plant-pollinator interactions around it? Or to a food web in244

another pond a few kilometers from here? In short, will we get a lot more insights by accumu-245
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lating data? Before answering this question (in the affirmative), it matters to recognize that, as246

Hortal et al. (2015) pointed out, biotic interactions are a core part of biodiversity; the Eltonian247

shortfall, manifested in our lack of widespread data about them, in as much of an impediment248

to our mission as ecologists as the absence of data on phylogeny or species occurrence would249

be. As a conclusion to this article, we would like to frame the aggregation of data on species250

interaction networks in standardized databases as both a requirement justified by fundamental251

science, and as an opportunity to conduct novel experiments on the prediction of ecological net-252

works. In fact, re-analysis of the raw food web data contained in mangal.io recently allowed253

MacDonald, Banville, and Poisot (2020) to develop a novel model of food web structure, which254

outperforms previous proposition for the relationship between species richness and link number.255

First, we require to collect data on species interactions following their measurement in situ be-256

cause there is mounting evidence that they cannot reliably be inferred from observing the two257

species in co-occurrence; this has been shown through experimental and modeling approaches258

(Barner et al. 2018; Thurman et al. 2019). A recent synthesis by Blanchet, Cazelles, and259

Gravel (2020) also reveals how the assumption that co-occurrence will inform our knowledge260

of species interactions as wholly unsupported by the corpus of ecological theories. With the261

mounting amount of information on species distribution, and initiatives like GBIF storing over262

a billion record of occurrences, inferring interactions this ways was tempting; sadly, it appears263

unfeasible, leaving the curation of interaction data as the justifiable decision moving forward.264

Second, we should collect data on species interactions following their measurement in situ,265

because this will enable the development of new generation of general models. Initial guidelines266

by Morales-Castilla et al. (2015) have led to an increase in the development and application of267

forecasting methods (reviewed in the introduction of this manuscript), and it is now clear that268

coupling data on species interaction, occurrences, traits (Schleuning et al. 2020), phylogeny,269

is going to lead to powerful predictive models of community structure. While knowing the270

structure of the food web of two ponds a few kilometers apart is not going to qualitatively change271

our understanding of food webs as a whole, the accumulation of data about different interactions272

in multiple environments will allow us to hunt for generalities, and identify rules that govern the273

assemblage of ecological networks.274
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Third, we should focus on digitizing, or collecting, time series of network structure. Networks275

are known to vary over short (Trøjelsgaard and Olesen 2016), long (Burkle, Marlin, and Knight276

2013), and very long (Nenzén, Montoya, and Varela 2014) periods of time, and having the ability277

to track changes of a network through time will provide important answers as to the suitability278

of a single, discrete sampling timepoint to serve as a reference state for the history of the entire279

network. This is of particular relevance as we now have both population time-series for various280

community assemblages (Dornelas et al. 2018), and the quantitative tools to analyse time-series281

of complex interactions (Ovaskainen et al. 2017). As of now, very few networks are proper282

temporal re-sampling of a single site, and this limits our ability to understand how networks283

change in nature.284

In conclusion, by accumulatingmore data, wewill increase the overlap between different databases285

(phylogeny, genetics, occurrences, functional traits), which will contribute to the unification of286

our knowledge of biodiversity, a task which is currently hampered by disconnectedness between287

data describing different aspects of community structure and composition (Poisot, Bruneau, et288

al. 2019). The work of predicting species interactions would be streamlined by both (i) estab-289

lishing and using a standardized database for species interactions with contextual metadata, and290

(ii) ensuring the compatibility of this database with other sources, through the use of established291

species identifiers. The mangal data specification (and database) solves both issues, and we are292

confident that through sustained data deposition, it will contribute to our ability to predict the293

structure of ecological networks.294

Data and code availability:295

All code is available openly at https://github.com/PoisotLab/MangalSamplingStatus,296

and the data can be retrieved from mangal.io and the BioClim database using the specified297

files. Also, weekly updated pages presenting the analyses reported in this manuscript, including298

the data files, are available at https://poisotlab.github.io/MangalSamplingStatus/.299
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Figure 1: Cumulative number of ecological networks available in mangal.io as a function of
the date of collection. About 1000 unique networks have been collected between 1987 and
2017, a rate of just over 30 networks a year. This temporal increase proceeds at different rates
for different types of networks; while the description of food webs is more or less constant, the
global acceleration in the dataset is due to increased interest in host-parasite interactions starting
in the late 1970s, while mutualistic networks mostly started being recorded in the early 2000s.
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Figure 2: Each point on the map corresponds to a network with parasitic, mutualistic, and preda-
tory interactions. It is noteworthy that the spatial coverage of these types of interactions is un-
even; the Americas have almost no recorded parasitic network, for example. Some places have
barely been studied or digitized at all, including Africa and Eastern Asia. This concentration of
networks around rich countries speaks to inadequate coverage of the diversity of landscapes on
Earth.
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Figure 3: Bins of network size (as measured by the number of nodes) through time. Although
the rythm of network collection has intensified, most networks that have been archived remain
relatively small, most often having fewer than 100 species.
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Figure 4: List of networks across in the space of biomes as originally presented by Whittaker
(1962). Predation networks, i.e. food webs, seem to have the most global coverage; parasitism
networks are restricted to low temperature and low precipitation biomes, congruent with the
majority of them being in Western Europe. Shading in the background of the figure represents
the relative abundance of the different precipitation/temperature combinations on Earth, above
-60 degrees of latitude.
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Figure 5: Position of the sampled networks on the first two principal components of the biocli-
matic space, as per a principal component analysis performed and centered and reduced bioclim
variables. The first two axes explain approx. 56% and 23% of the total variance.
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Figure 6: Density of the distance to the centroid (in the scaled climatic space) for each network,
by type of interaction. Larger values indicate that the network is far from its centroid, and
therefore represents sampling in a more “unique” location. Mutualistic interactions have been,
on average, studied in more diverse locations that parasitism or predatory networks.
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Figure 7: Environmental distance for every terrestrial pixel to its three closest networks. Areas
of more yellow coloration are further away from any sampled network, and can therefore not be
well predicted based on existing empirical data. Areas with a dark blue coloration have more
analogs. The distance is expressed in arbitrary units and is relative.
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