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Abstract:

• Metawebs (networks of potential interactions within a species pool) are a powerful abstraction to under-
stand how large-scale species interaction networks are structured.

• Because metawebs are typically expressed at large spatial and taxonomic scales, assembling them is a te-
dious and costly process; predictive methods can help circumvent the limitations in data deficiencies, by
providing a first approximation of metawebs.”

• One way to improve our ability to predict metawebs is to maximize available information by using graph
embeddings, as opposed to an exhaustive list of species interactions. Graph embedding is an emerging
field in machine learning that holds great potential for ecological problems.

• Here, we outline how the challenges associated with inferring metawebs line-up with the advantages of
graph embeddings; followed by a discussion as to how the choice of the species pool has consequences on
the reconstructed network, specifically as to the role of human-made (or arbitrarily assigned) boundaries
and how these may influence ecological hypotheses.



Introduction1

The ability to infer potential biotic interactions could serve as a significant breakthrough in our ability2

to conceptualize networks over large spatial scales (Hortal et al., 2015). Reliable inferences would3

not only boost our understanding of the structure of species interaction networks, but also increase4

the amount of information that can be used for biodiversity management. In a recent overview of5

the field of ecological network prediction, Strydom, Catchen, et al. (2021) identified two challenges of6

interest to the prediction of interactions at large scales. First, there is a relative scarcity of relevant7

data in most places globally – which, due to the limitations in most predictive methods, restricts the8

ability to infer interactions to locations where it is least required (i.e. regions where we already have9

interaction data) leaving us unable to make inference in data scarce regions (where we most need10

it); second, accurate predictors are important for accurate predictions, and the lack of methods that11

can leverage a small amount of accurate data is a serious impediment to our predictive ability. In this12

contribution, we (i) highlight the power of viewing (and constructing)metawebs as probabilistic objects13

in the context of low-probability interactions, (ii) discusshowa family ofmachine learning tools (graph14

embeddings and transfer learning) can be used to overcome data limitations to metaweb inference,15

and (iii) highlight how the use of metawebs introduces important questions for the field of network16

ecology.17

In most places, our most reliable biodiversity knowledge is that of a species pool where a set of po-18

tentially interacting species in a given area could occur: through the analysis of databases like the19

Global Biodiversity Information Facility (GBIF) or the International Union for the Conservation of Na-20

ture (IUCN), it is possible to construct a list of species for a region of interest. Following the definition21

of Dunne (2006), a metaweb is the ecological network analogue to the species pool; specifically, it in-22

ventories all potential interactions between species for a spatially delimited area (and so captures the23

𝛾 diversity of interactions as per Poisot et al. (2012)). However, inferring the potential interactions24

between these species still remains a challenge. And yet, the metaweb holds valuable ecological in-25

formation: it represents the joint effect of functional, phylogenetic, and macroecological processes26

(Carlson et al., 2022; Morales-Castilla et al., 2015; Morales-Castilla et al., 2021). Specifically, it repre-27

sents the “upper bounds” on what the composition of the local networks, given a local species pool,28

can be (see e.g. McLeod et al., 2021); this information can help evaluate the ability of ecological as-29

semblages to withstand the effects of, for example, climate change (Fricke et al., 2022). These local30

networksmay be reconstructed given an appropriate knowledge of local species composition and pro-31

vide information on the structure of networks at finer spatial scales. This has been done for example32
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for tree-galler-parasitoid systems (Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019),1

terrestrial tetrapod trophic interactions (J. Braga et al., 2019; O’Connor et al., 2020), and crop-pest2

networks (Grünig et al., 2020).3

The metaweb itself is not a prediction of local networks at specific locations within the spatial area it4

covers: it will have a different structure, notably by having a larger connectance (see e.g. Wood et al.,5

2015) and complexity (see e.g. Galiana et al., 2022), than any of these local networks. Local networks6

(which capture the 𝛼 diversity of interactions) are a subset of the metaweb’s species and its realized7

interactions, and have been called “metaweb realizations” (Poisot et al., 2015). Differences between8

local networks and their metawebs are due to chance, species abundance and co-occurrence, local9

environmental conditions, and local distribution of functional traits, among others. Specifically, al-10

though co-occurrence can be driven by interactions (Cazelles et al., 2016), co-occurrence alone is not11

a predictor of interactions (Blanchet et al., 2020; Thurman et al., 2019), and therefore the lack of co-12

occurrence cannot be used to infer the lack of a feasible interaction. Yet, recent results by Saravia et13

al. (2021) strongly suggested that local (metaweb) realizations only respondweakly to local conditions:14

instead, they reflect constraints inherited by the structure of theirmetaweb. This sets up the core goal15

of predictive network ecology as the prediction of metaweb structure, as it is required to accurately16

produce downscaled, local predictions.17

Ametaweb is an inherently probabilistic object18

Treating interactionsasprobabilistic (as opposed tobinary) events is amorenuancedand realisticway19

to represent them. Dallas et al. (2017) suggested that most interactions (links) in ecological networks20

are cryptic, i.e. uncommonorhard toobserve. This argument echoes Jordano (2016): samplingecolog-21

ical interactions is difficult because it requires first the joint observation of two species, and then the22

observation of their interaction. In addition, it is generally expected that weak or rare interactionswill23

be more prevalent in networks than common or strong interactions (Csermely, 2004); this is notably24

the case in food chains, whereinmanyweaker interactions are key to the stability of a system (Neutel et25

al., 2002). In the light of these observations, we expect to see an over-representation of low-probability26

(hereafter rare) interactions under a model that accurately predicts interaction probabilities.27

Yet, the original metaweb definition, and indeed most past uses of metawebs, was based on the pres-28

ence/absence of interactions. Moving towards probabilisticmetawebs, by representing interactions as29

Bernoulli events (see e.g. Poisot et al., 2016), offers the opportunity to weigh these rare interactions30
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appropriately. The inherent plasticity of interactions is important to capture: there have been docu-1

mented instances of food webs undergoing rapid collapse/recovery cycles over short periods of time2

(e.g. Pedersen et al., 2017). Furthermore, because the structure of themetaweb cannot be known in ad-3

vance, it is important to rely on predictive tools that do not assume a specific network topology for link4

prediction (Gaucher et al., 2021), but are able to work on generalizations of the network that capture5

statistical processes giving it its structure. These considerations emphasizewhymetawebpredictions6

should focus on quantitative (preferentially probabilistic) predictions, and this should constrain the7

suite of models that are appropriate for prediction. Binary classifiers based on probabilities have an8

extremely robustmethodology to validate them, and this applies naturally to the prediction of interac-9

tions (Poisot, 2023).10

It is important to recall that ametaweb is intended as a catalogue of all potential (feasible) interactions,11

which is then filtered for a given application (Morales-Castilla et al., 2015). It is therefore important12

to separate the interactions that happen “almost surely” (repeated observational data), “almost never”13

(repeated lackof evidence or evidence that the link is forbidden through e.g. traitmis-match), and inter-14

actions with a probability that lays somewhere in between (Catchen et al., 2023). Although metawebs15

can (and in practice likely do) include false positives, these are statistically negligible compared to the16

false negatives. Furthermore, Strydom et al. (2022) shows that t-SVD embedding is extremely robust17

to (and able to detect) the presence of false positives. In a sense, becausemost ecological interactions18

are elusive, we should consider the direct consequences this has on sampling: once the common in-19

teractions are documented, the effort required in documenting each rare interaction will increase ex-20

ponentially (Jordano, 2016). Recent proposals in other fields relying onmachine learning approaches21

emphasize the idea that algorithms meant to predict, through the assumption that they approximate22

the process generating the data, can also act as data generators (Hoffmann et al., 2019). High quality23

observational data can be used to infer core rules underpinning network structure, and be supple-24

mented with synthetic data coming from predictive models trained on them, thereby increasing the25

volume of information available for analysis. Indeed, Strydom, Catchen, et al. (2021) suggested that26

knowing the metaweb may render the prediction of local networks easier, because it fixes an “upper27

bound” on which interactions can exist. In this context, a probabilistic metaweb represents an aggre-28

gation of informative priors on the biological feasibility of interactions, which is usually hard to obtain29

yet has possibly the most potential to boost our predictive ability of local networks (Bartomeus, 2013;30

Bartomeus et al., 2016). This would represent a departure from simple rules expressed at the network31

scale (e.g. Williams &Martinez, 2000) to a view of network prediction based on learning the rules that32
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underpin interactions and their variability (Gupta et al., 2022).1

[Figure 1 about here.]2

Graph embedding offers promises for the inference of potential in-3

teractions4

Graph (or network) embedding (Figure 1) is a family ofmachine learning techniques, whosemain task5

is to learn a mapping function from a discrete graph to a continuous domain (Arsov & Mirceva, 2019;6

Chami et al., 2022). Their main goal is to learn a low dimensional vector representation of the graph7

(embeddings), such that its key properties (e.g. local or global structures) are retained in the embed-8

ding space (Yan et al., 2005). The embedding space may, but will not necessarily, have lower dimen-9

sionality than the graph. Ecological networks are promising candidates for the routine application of10

embeddings, as they tend to possess a shared structural backbone (see e.g. BramonMora et al., 2018),11

which hints at structural invariants in empirical data. Assuming that these structural invariants are12

common enough, they would dominate the structure of networks, and therefore be adequately cap-13

tured by the first (lower) dimensions of an embedding, without the need to measure derived aspects14

of their structure (e.g. motifs, paths, modularity, …).15

Graph embedding produces latent variables (but not traits)16

Before moving further, it is important to clarify the epistemic status of node values derived from em-17

beddings: specifically, they are not functional traits, and therefore should not be interpreted in terms18

of effects or responses. As per the framework of Malaterre et al. (2019), these values neither derive19

from, nor result in, changes in organismal performance, and should therefore not be used to quantify20

e.g. functional diversity. This holds true even when there are correlations between latent values and21

functional traits: although these enable an ecological discussion of how traits condition the structure22

of the network, the existence of a statistical relationship does not elevate the latent values to the status23

of functional traits.24

Rather thandirectly predicting biological rules (see e.g. Pichler et al., 2020 for an overview), whichmay25

be confoundedby the sparse nature of graphdata, learning embeddingsworks in the low-dimensional26

space that maximizes information about the network structure. This approach is further justified by27

the observation, for example, that the macro-evolutionary history of a network is adequately repre-28
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sented by some graph embeddings [Random dot product graphs (RDPG); see Dalla Riva & Stouffer1

(2016)]. In a recent publication, Strydom et al. (2022) have used an embedding (based on RDPG) to2

project a metaweb of trophic interactions between European mammals, and transferred this infor-3

mation to mammals of Canada, using the phylogenetic distance between related clades to infer the4

values in the latent subspace into which the European metaweb was projected. By performing the5

RDPG step on re-constructed values, this approach yields a probabilistic trophic metaweb for mam-6

mals of Canada based on knowledge of European species, despite a limited (≈ 5%) taxonomic overlap,7

and illustrates how the values derived from an embedding can be used for prediction without being8

“traits” of the species they represent.9

Ecological networks are good candidates for embedding10

Ecological networks are inherently low-dimensional objects, and can be adequately represented with11

less than ten dimensions (J. Braga et al., 2019; M. P. Braga et al., 2021; Eklöf et al., 2013). Simulation12

results by Botella et al. (2022) suggested that there is no dominant method to identify architectural13

similarities between networks: multiple approaches need to be tested and compared to the network14

descriptor of interest on a problem-specific basis. Thismatches previous results on graph embedding,15

wherein different embedding algorithms yield different network embeddings (Goyal & Ferrara, 2018),16

calling for a careful selection of the problem-specific approach to use. Additionally, Ghasemian et17

al. (2020) suggest that in some cases, nodes embeddings can be outperformed by other methods, re-18

inforcing the need to thoroughly select the appropriate data analysis technique. In Table 1, we present19

a selectionof commongraphandnodeembeddingmethods, alongside examples of their use topredict20

interactions or statistical associations between species. These methods rely largely on linear algebra21

or pseudo-randomwalks on graphs. All forms of embeddings presented in Table 1 share the common22

property of summarizing their objects into (sets of) dense feature vectors, that capture the overall net-23

work structure, pairwise information onnodes, and emergent aspects of the network, in a compressed24

way (i.e. with some information loss, as we later discuss in the illustration). Node embeddings tend to25

focus onmaintaining pairwise relationships (i.e. species interactions), while graph embeddings focus26

on maintaining the network structure (i.e. emergent properties). Nevertheless, some graph embed-27

ding techniques (like RDPG, see e.g. Wu et al., 2021) will provide high-quality node-level embeddings28

while also preserving network structure.29
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Box 1 - Graph Neural Networks

One prominent family of approaches we do not discuss in the present manuscript is Graph Neu-

ral Networks [GNN; Zhou et al. (2020)]. GNN are, in a sense, a method to embed a graph into a

dense subspace, but belong to the family of deep learningmethods, which has its own set of prac-

tices (see e.g. Goodfellow et al., 2016). An important issue with methods based on deep learning

is that, because their parameter space is immense, the sample size of the data fed into them

must be similarly large (typically thousands of instances). This is a requirement for the model

to converge correctly during training, but this assumption is unlikely to be met given the size of

datasets currently available formetawebs (or single time/location species interaction networks).

This data volume requirement is mostly absent from the techniques we list below. Furthermore,

GNN still have some challenges related to their shallow structure, and concerns related to scal-

ability (see Gupta et al., 2021 for a review), which are mostly absent from the methods listed in

Table 1. Assuming that the uptake of next-generation biomonitoring techniques does indeed

deliver larger datasets on species interactions (Bohan et al., 2017), there is nevertheless the po-

tential for GNN to become an applicable embedding/predictive technique in the coming years.
1

Graph embeddings can serve as a dimensionality reduction method. For example, RDPG (Strydom et2

al., 2022) and t-SVD [truncated Singular Value Decomposition; Poisot et al. (2021)] typically embed3

networks using fewer dimensions than the original network [the original network has asmany dimen-4

sions as species, and as many informative dimensions as trophically unique species; Strydom, Dalla5

Riva, et al. (2021)]. However, this is not necessarily the case– indeed, onemayperformaPCA (a special6

case of SVD) to project the raw data into a subspace that improves the efficacy of t-SNE [t-distributed7

stochastic neighbor embedding; Maaten (2009)]. There are many dimensionality reductions (Anowar8

et al., 2021) that canbe applied to an embeddednetwork should the need for dimensionality reduction9

(for example for data visualization) arise. In brief, many graph embeddings can serve as dimensional-10

ity reduction steps, but not all do, neither do all dimensionality reduction methods provide adequate11

graph embedding capacities. In the next section (and Figure 1), we show how the amount of dimen-12

sionality reduction can affect the quality of the embedding.13
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Table1: Overviewof somecommongraphembeddingapproaches, by typeof embeddedobjects, along-
side examples of their use in the prediction of species interactions. These methods have not yet been
routinely used to predict species interactions; most examples that we identified were either statisti-
cal associations, or analogues to joint species distribution models. 𝑎: application is concerned with
statistical interactions, which are not necessarilly direct biotic interactions; 𝑏:application is concerned
with joint-SDM-like approach, which is also very close to statistical associations as opposed to direct
biotic interactions. Given the need to evaluate different methods on a problem-specific basis, the fact
thatmanymethods have not been used on network problems is an opportunity for benchmarking and
method development. Note that the row for PCA also applies to kernel/probabilistic PCA, which are
variations on the more general method of SVD. Note further that t-SNE has been included because it
is frequently used to embed graphs, including of species associations/interactions, despite not being
strictly speaking, a graph embedding technique (see e.g. Chami et al., 2022).

Method Object Technique Reference Application

t-SNE nodes statistical

divergence

Hinton & Roweis

(2002)

(Cieslak et al.,

2020, species-

environment

responses 𝑎)

(Gibb et al., 2021,

host-virus

network

representation)

LINE nodes stochastic

gradient descent

Tang et al. (2015)

SDNE nodes gradient descent D. Wang et al.

(2016)

node2vec nodes stochastic

gradient descent

Grover &

Leskovec (2016)

HARP nodes meta-strategy H. Chen et al.

(2017)

DMSE joint nodes deep neural

network

D. Chen et al.

(2017)

(D. Chen et al.,

2017, species-

environment

interactions 𝑏)

graph2vec sub-graph skipgram

network

Narayanan et al.

(2017)
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Method Object Technique Reference Application

RDPG graph SVD Young &

Scheinerman

(2007)

(Dalla Riva &

Stouffer, 2016,

trophic

interactions)

(Poisot et al.,

2021, host-virus

network

prediction)

GLEE graph Laplacian

eigenmap

Torres et al.

(2020)

DeepWalk graph stochastic

gradient descent

Perozzi et al.

(2014)

(Wardeh et al.,

2021, host-virus

interactions)

GraphKKE graph stochastic

differential

equation

Melnyk et al.

(2020)

(Melnyk et al.,

2020,

microbiome

species

associations 𝑎)

FastEmbed graph eigen

decomposition

Ramasamy &

Madhow (2015)

PCA graph eigen

decomposition

Surendran (2013) (Strydom,

Catchen, et al.,

2021,

host-parasite

interactions)

Joint methods multiple graphs multiple

strategies

S. Wang et al.

(2021)

The popularity of graph embedding techniques inmachine learning ismore than the search for struc-1

tural invariants: graphs are discrete objects, andmachine learning techniques tend to handle contin-2

uous data better. Bringing a sparse graph into a continuous, dense vector space (Xu, 2021) opens up3
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a broader variety of predictive algorithms, notably of the sort that are able to predict events as prob-1

abilities (Murphy, 2022). Furthermore, the projection of the graph itself is a representation that can2

be learned; Runghen et al. (2021), for example, used a neural network to learn the embedding of a3

network in which not all interactions were known, based on the nodes’ metadata. This example has4

many parallels in ecology (see Figure 1 C), in which node metadata can be represented by phylogeny,5

abundance, or functional traits. Using phylogeny as a source of information assumes (or strives to cap-6

ture) the action of evolutionary processes on network structure, which at least for networks have been7

well documented (M. P. Braga et al., 2021; Dalla Riva & Stouffer, 2016; Eklöf & Stouffer, 2016; Stouf-8

fer et al., 2007; Stouffer et al., 2012); similarly, the use of functional traits assumes that interactions9

can be inferred from the knowledge of trait-matching rules, which is similarly well supported in the10

empirical literature (Bartomeus, 2013; Bartomeus et al., 2016; Goebel et al., 2023; Gravel et al., 2013).11

Relating this information to an embedding rather than a list of network measures would allow to cap-12

ture their effect on the more fundamental aspects of network structure; conversely, the absence of a13

phylogenetic or functional signal may suggest that evolutionary/trait processes are not strong drivers14

of network structure, therefore opening a new way to perform hypothesis testing.15

An illustration of metaweb embedding16

In this section, we illustrate the embeddingof a collectionof bipartite networks collectedbyHadfield et17

al. (2014), using t-SVD andRDPG. Briefly, an RDPGdecomposes a network into two subspaces (left and18

right), which are matrices that when multiplied give an approximation of the original network. RDPG19

has the particularly desirable properties of being a graph embedding technique that produces rele-20

vant node-level feature vectors, and provides good approximations of graphs with varied structures21

(Athreyaet al., 2017). The code to reproduce this example is available as supplementarymaterial (note,22

for the sake of comparison, that Strydom, Catchen, et al., 2021 have an example using embedding23

through PCA followed by prediction using a deep neural network on the same dataset). The resulting24

(binary) metaweb ℳ has 2131 interactions between 206 parasites and 121 hosts, and its adjacency25

matrix has full rank (i.e. it represents a spacewith 121dimensions). All analyseswere done using Julia26

(Bezanson et al., 2017) version 1.7.2, Makie.jl (Danisch & Krumbiegel, 2021), and EcologicalNetworks.jl27

(Poisot et al., 2019).28

[Figure 2 about here.]29

In Figure 2, we focus on some statistical checks of the embedding. In panel A, we show that the av-30
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eraged 𝐿2 loss (i.e. the mean of squared errors) between the empirical and reconstructed metaweb1

decreases when the number of dimensions (rank) of the subspace increases, with an inflection at 392

dimensions (out of 120 initially) according to the finite differencesmethod. As discussed by Runghen3

et al. (2021), there is often a trade-off between the number of dimensions to use (more dimensions are4

more computationally demanding) and the quality of the representation. In panel B, we show the in-5

crease in cumulative variance explained at each rank, and visualize that using 39 ranks explains about6

70% of the variance in the empirical metaweb. This provides different information from the 𝐿2 loss7

(which is averaged across interactions), as it works on the eigenvalues of the embedding, and there-8

fore captures higher-level features of thenetwork. In panelC, we showpositions of hosts andparasites9

on the first two dimensions of the left and right subspaces. Note that these values largely skew nega-10

tive, because the first dimensions capture the coarse structure of the network: most pairs of species11

do not interact, and therefore have negative values. Finally in panel D, we show the predicted weight12

(i.e. the result of the multiplication of the RDGP subspaces at a rank of 39) as a function of whether13

the interactions are observed, not-observed, or unknown due to lack of co-occurrence in the original14

dataset. This reveals that the observed interactions have higher predicted weights, although there is15

some overlap; the usual approach to identify potential interactions based on this information would16

be a thresholding analysis, which is outside the scope of this manuscript (and is done in the papers17

cited in this illustration). Because the values returned fromRDPGarenot bound to theunit interval, we18

performed a clamping of the weights to the unit space, showing a one-inflation in documented inter-19

actions, and a zero-inflation in other species pairs. Panel D specifically shows that species pairs with20

no documented co-occurrence have weights that are not distinguishable from species pairs with no21

documented interactions; in other words, looking at the embedding, species that do not co-occur are22

not easily distinguished from species that do not interact. This suggests that (as befits a host-parasite23

model) the ability to interact is a strong predictor of co-occurrence.24

[Figure 3 about here.]25

In Figure 3, we relate the values of latent variables for hosts to different ecologically-relevant data; we26

can perform this additional step, because the results presented in Figure 2 show that we can extract27

an embedding of the metaweb that captures enough variance to be relevant. Importantly, this is true28

for both 𝐿2 loss (indicating that RDPG is able to capture pairwise processes) and the cumulative vari-29

ance explained (indicating that RDPG is able to capture network-level structure), which suggests that30

these approaches may allow to predict interactions and network structure. In panel A, we show that31

host with a higher value on the first dimension have fewer parasites. This relates to the body size of32
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hosts in the PanTHERIA database (Jones et al., 2009), as shown in panel B: interestingly, the position1

on the first axis is only weakly correlated to body mass of the host; this matches well established re-2

sults showing that body size/mass is not always a direct predictor of parasite richness in terrestrial3

mammals (Morand & Poulin, 1998), a result we observe in panel C. Finally, in panel D, we can see4

how different taxonomic families occupy different positions on the first axis, with e.g. Sciuridae be-5

ing biased towards higher values. These results show how we can look for ecological informations in6

the output of network embeddings, which can further be refined into the selection of predictors for7

transfer learning.8

Themetawebmerges ecological hypotheses and practices9

Metaweb inference seeks to provide information about the interactions between species at a large spa-10

tial scale, typically a scale large enough to be considered of biogeographic relevance (indeed, many of11

the examples covered in the introduction span areas larger than a country, some of them global). But12

as Herbert (1965) rightfully pointed out, “[y]ou can’t draw neat lines around planet-wide problems”;13

any inference of a metaweb must therefore contend with several novel, interwoven, families of prob-14

lems. In this section, we outline three that we think are particularly important, and discuss how they15

may be addressed with subsequent data analysis or simulations, and how they emerge in the specific16

context of using embeddings; some of these issues are related to the application of these methods at17

the science-policy interface. Adressing these considerations as part of themethodological discussion18

is particularly important, as the construction of metawebs can perpetuate legacies of biases in data19

(Box 2).20

Identifying the properties of the network to embed21

If the initial metaweb is too narrow in scope, notably from a taxonomic point of view, the chances22

decrease of finding another area with enough related species (through phylogenetic relatedness or23

similarity of functional traits) to make a reliable inference. This is because transfer requires similar-24

ity (Figure 1). A diagnostic for the lack of similar species would likely be large confidence intervals25

during estimation of the values in the low-rank space. In other words, the representation of the orig-26

inal graph is difficult to transfer to the new problem. Alternatively, if the initial metaweb is too large27

(taxonomically), then the resulting embeddings would need to represent interactions between taxo-28

nomic groups that are not present in the new location. This would lead to a much higher variance29
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in the starting dataset, and to under-dispersion in the target dataset, resulting in the potential un-1

der or over estimation of the strength of new predicted interactions. Llewelyn et al. (2022) provided2

compelling evidence for these situations by showing that, even at small spatial scales, the transfer of3

information about interactions becomesmore challenging when areas rich with endemic species are4

considered. The lack of well documentedmetawebs is currently preventing the development of more5

concrete guidelines. The question of phylogenetic relatedness and distribution is notably relevant if6

themetaweb is assembled in an areawithmostly endemic species (e.g. a system that has undergone re-7

cent radiation or that has remained in isolation for a long period of timemight not have an analogous8

system with which to draw knowledge from), and as with every predictive algorithm, there is room9

for the application of our best ecological judgement. Because this problem relates to distribution of10

species in the geographic or phylogenetic space, it can certainly be approached through assessing the11

performance of embedding transfer in simulated starting/target species pools.12

Identifying the scope of the prediction to perform13

The area for which we seek to predict the metaweb should determine the species pool on which the14

embedding is performed. Metawebs can be constructed by assigning interactions in a list of species15

within specific regions. The upside of this approach is that information relevant for the construction16

of this dataset is likely to exist, as countries usually set conservation goals at the national level (Buxton17

et al., 2021), and as quantitative instruments are consequently designed towork at these scales (Turak18

et al., 2017); specific strategies are often enacted at smaller scales, nested within a specific country19

(Ray et al., 2021). However, there is no guarantee that these arbitrary boundaries are meaningful. In20

fact, we do not have a satisfying answer to the question of “where does an ecological network stop?”,21

the answer to which would dictate the spatial span to embed/predict. Recent results by Martins et22

al. (2022) suggested that networks are shaped within eco-regions, with abrupt structural transitions23

from an eco-region to the next. Should this trend hold generally, this would provide an ecologically-24

relevant scale at which metawebs can be downscaled and predicted. Other solutions could leverage25

network-area relationships to identify areas in which networks are structurally similar (see e.g. Fortin26

et al., 2021; Galiana et al., 2018, 2022). Both of these solutions require ample pre-existing information27

about the network in space. Nevertheless, the inclusion of species for which we have data but that are28

not in the right spatial extent may improve the performance of approaches based on embedding and29

transfer, if they increase the similarity between the target and destination network. This proposal can30

specifically be evaluated by adding nodes to the network to embed, and assessing the performance of31

12



predictive models (see e.g. Llewelyn et al., 2022).1

Putting models in their context2

Predictive approaches in ecology, regardless of the scale at which they are deployed and the intent of3

their deployment, originate in the framework that contributed to theongoingbiodiversity crisis (Adam,4

2014) and reinforced environmental injustice (Choudry, 2013; Domínguez & Luoma, 2020). The risk5

of embedding this legacy in our models is real, especially when the impact of this legacy on species6

pools is being increasingly documented. This problem can be addressed by re-framing the way we7

interact with models, especially when models are intended to support conservation actions. Particu-8

larly on territories that were traditionally stewarded by Indigenous people, we must interrogate how9

predictive approaches and the biases that underpin them can be put to task in accompanying Indige-10

nous principles of land management (Eichhorn et al., 2019; No’kmaq et al., 2021). The discussion11

of “algorithm-in-the-loop” approaches that is now pervasive in themachine learning community pro-12

vides examples of why this is important. Human-algorithm interactions are notoriously difficult and13

can yield adverse effects (Green & Chen, 2019; Stevenson & Doleac, 2021), suggesting the need to14

systematically study them for the specific purpose of, here, biodiversity governance. Improving the al-15

gorithmic literacy of decisionmakers is part of the solution (e.g. Lamba et al., 2019; Mosebo Fernandes16

et al., 2020), as we can reasonably expect that model outputs will be increasingly used to drive policy17

decisions (Weiskopf et al., 2022). Our discussion of these approaches need to go beyond the techni-18

cal and statistical, and into the governance consequences they can have. To embed data also embeds19

historical and contemporary biases that acted on these data, both because they shaped the ecolog-20

ical processes generating them (see Box 2), and the global processes leading to their measurement21

and publication. For a domain as vast as species interaction networks, these biases exist at multiple22

scales along the way, and a challenge for prediction is not only to develop (or adopt) new quantitative23

tools, but to assess the behavior of these tools in the proper context.24

Conclusion25

Although promising, the application of embeddings to metaweb prediction still involved several chal-26

lenges. First, there is a need to understand how to define a metaweb as a single, cohesive, unit of27

ecological organisation. This is likely to have very different answers based on the specific taxonomic28

group, temporal and spatial resolution, and question being investigated. Second, there is a need to un-29

13



derstand the scale at which these predictions are relevant. Althoughwe have documentedmany cases1

of using embedding to fill gaps in the metaweb, these techniques can likely be brought into a spatial2

(and possibly temporal) context. The validation of these predictions will have to proceed jointly with3

empirical sampling of interactions, but also with the design of downsampling methods. Finally, there4

is a need for a greater understanding of how biases in the data propagate to the predictions. Because5

the volume of metawebs is currently low, and because graph embeddings have not been commonly6

applied, we anticipate that this discussion will take place organically in the coming years.7

Box 2 - Minding legacies shaping ecological datasets

In large parts of the world, boundaries that delineate geographic regions are a legacy of settler

colonialism, which drives global disparity in capacity to collect and publish ecological data. Ap-

plying any embedding to biaseddata doesnot debias them, but rather embeds these biases, prop-

agating them to themodels using embeddings tomake predictions. Furthermore, the use of eco-

logical data itself is not an apolitical act (Nost & Goldstein, 2021): data infrastructures tend to

be designed to answer questions within national boundaries (therefore placing contingencies

on what is available to be embedded), their use often drawing upon, and reinforcing, territorial

statecraft (see e.g. Barrett, 2005). As per Machen & Nost (2021), these biases are particularly

important to consider when knowledge generated algorithmically is used to supplement or re-

place human decision-making, especially for governance (e.g. enacting conservation decisions

on the basis of model prediction). As information on networks is increasingly leveraged for con-

servation actions (see e.g. Eero et al., 2021; Naman et al., 2022; Stier et al., 2017), the need to

appraise and correct biases that are unwittingly propagated to algorithmswhen embedded from

the original data is immense. These considerations are evenmore urgent in the specific context

of biodiversity data. Long-term colonial legacies still shape taxonomic composition to this day

(Lenzner et al., 2022; Raja, 2022), andmuch shorter-termchanges in taxonomic andgenetic rich-

ness of wildlife emerged through environmental racism (Schmidt & Garroway, 2022). Thus, the

set of species found at a specific location is not only as the result of a response to ecological pro-

cesses separate fromhuman influence, but also the result of human-environment interaction as

well as the results of legislative/political histories.
8
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Figure 1: The embedding process (A) can help to identify links (interactions) that may have been
missed within the original community (represented by the orange dashed arrows, B). Transfer learn-
ing (D) allows for the prediction of links (interactions) even when novel species (C) are included along-
side the original community. This is achievedwith other ecologically relevant predictors (e.g. traits) in
conjunction with the known interactions to infer latent values (E). Ultimately this allows us to predict
links (interactions) for species external from the original sample (blue dashed arrows) as well asmiss-
ing within sample links (F). Within this context the predicted (and original) networks as well as the
ecological predictors used (green boxes) are products that can be quantified through measurements
in the field, whereas the embedded as well as imputed matrices (purple box) are representative of a
decomposition of the interaction matrices onto the embedding space
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Figure 2: Validation of an embedding for a host-parasitemetaweb, using RandomDot Product Graphs.
A, decrease in approximation error as the number of dimensions in the subspaces increases. B, in-
crease in cumulative variance explained as the number of ranks considered increases; in A and B,
the dot represents the point of inflexion in the curve (at rank 39) estimated using the finite differ-
ences method. C, position of hosts and parasites in the space of latent variables on the first and sec-
ond dimensions of their respective subspaces (the results have been clamped to the unit interval). D,
predicted interaction weight from the RDPG based on the status of the species pair in the metaweb.
Source: Demonstration of metaweb embedding using RDPG
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Figure 3: Ecological analysis of an embedding for a host-parasitemetaweb, usingRandomDot Product
Graphs. A, relationship between the number of parasites and position along the first axis of the right-
subspace for all hosts, showing that the embedding captures elements of network structure at the
species scale. B, weak relationship between the bodymass of hosts (in grams) and the position along-
side the same dimension. C, weak relationship between body mass of hosts and parasite richness.
D, distribution of positions alongside the same axis for hosts grouped by taxonomic family. Source:
Demonstration of metaweb embedding using RDPG
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