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1. Despite their importance in many ecological processes, collecting data and information on ecological

interactions is an exceedingly challenging task. For this reason, large parts of the world have a data

deficit when it comes to species interactions, and how the resulting networks are structured. As data

collection alone is unlikely to be sufficient, community ecologists must adopt predictive methods.

2. We present a methodological framework that uses graph embedding and transfer learning to

assemble a predicted list of trophic interactions of a species pool for which their interactions are

unknown. Specifically, we ‘learn’ the information (latent traits) of species from a known interaction

network and infer the latent traits of another species pool for which we have no a priori interaction

data based on their phylogenetic relatedness to species from the known network. The latent traits

can then be used to predict interactions and construct an interaction network.

3. Here we assembled a metaweb for Canadian mammals derived from interactions in the European

food web, despite only 4% of common species being shared between the two locations. The results of

the predictive model are compared against databases of recorded pairwise interactions, showing that

we correctly recover 91% of known interactions.

4. The framework itself is robust even when the known network is incomplete or contains spurious

interactions making it an ideal candidate as a tool for filling gaps when it comes to species

interactions. We provide guidance on how this framework can be adapted by substituting some

approaches or predictors in order to make it more generally applicable.



Introduction1

There are two core challenges we are faced with in furthering our understanding of ecological networks2

across space, particularly at macro-ecologically relevant scales (e.g. Trøjelsgaard & Olesen, 2016). First,3

ecological networks within a location are difficult to sample properly (Jordano, 2016a, 2016b), resulting in4

a widespread “Eltonian shortfall” (Hortal et al., 2015), i.e. a lack of knowledge about inter- and intra-5

specific relationships. This first challenge has been, in large part, addressed by the recent emergence of a6

suite of methods aiming to predict interactions within existing networks, many of which are reviewed in7

Strydom, Catchen, et al. (2021). Second, recent analyses based on collected data (Poisot, Bergeron, et al.,8

2021) or metadata (Cameron et al., 2019) highlight that ecological networks are currently studied in a9

biased subset of space and bioclimates, which impedes our ability to generalize any local understanding of10

network structure. Meaning that, although the framework to address incompleteness within networks11

exists, there would still be regions for which, due to a lack of local interaction data, we are unable to infer12

potential species interactions.13

Here, we present a general method to infer potential trophic interactions, relying on the transfer learning14

of network representations, specifically by using similarities of species in a biologically/ecologically15

relevant proxy space (e.g. shared morphology or ancestry). Transfer learning is a machine learning16

methodology that uses the knowledge gained from solving one problem and applying it to a related17

(destination) problem (Pan & Yang, 2010; Torrey & Shavlik, 2010). In this instance, we solve the problem18

of predicting trophic interactions between species, based on knowledge extracted from another species19

pool for which interactions are known by using phylogenetic structure as a medium for transfer. There is a20

plurality of measures of species similarities that can be used for inferring potential species interactions i.e.21

metaweb reconstruction (see e.g. Morales-Castilla et al., 2015); however, phylogenetic proximity has22

several desirable properties when working at large scales. Gerhold et al. (2015) made the point that23

phylogenetic signal captures diversification of characters (large macro-evolutionary process), but not24

necessarily community assembly (fine ecological process); Dormann et al. (2010) previously found very25

similar conclusions. Interactions tend to reflect a phylogenetic signal because they have a conserved26

pattern of evolutionary convergence that encompasses a wide range of ecological and evolutionary27

mechanisms (Cavender-Bares et al., 2009; Mouquet et al., 2012), and - most importantly - retain this signal28

even if it is obscured at the community scale due to e.g. local conditions (Hutchinson et al., 2017; Poisot &29
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Stouffer, 2018). Finally, species interactions at macro-ecological scales seem to respond mostly to30

macro-evolutionary processes (Price, 2003); which is evidenced by the presence of conserved backbones in31

food webs (Bramon Mora et al., 2018; Dalla Riva & Stouffer, 2016), strong evolutionary signature on prey32

choice (Stouffer et al., 2012), and strong phylogenetic signature in food web intervality (Eklöf & Stouffer,33

2016). Phylogenetic reconstruction has also previously been used within the context of ecological34

networks, namely understanding ancestral plant-insect interactions (Braga et al., 2021). Taken together,35

these considerations suggest that phylogenies can reliably be used to transfer knowledge on species36

interactions.37

[Figure 1 about here.]38

In fig. 1, we provide a methodological overview based on learning the embedding of a metaweb of trophic39

interactions for European mammals (known interactions; Maiorano et al., 2020a, 2020b) and, based on40

phylogenetic relationships between mammals globally (i.e., phylogenetic tree Upham et al., 2019), infer a41

metaweb for the Canadian mammalian species pool (using only a species list i.e. we have no prior data on42

species interaction data for Canada in this instance). Our case study shows that phylogenetic transfer43

learning is an effective approach to the generation of probabilistic metawebs. This showcases that44

although the components (species) that make up the Canadian and European communities may be45

minimally shared (the overall species overlap is less than 4%), if the medium (proxy space) selected in the46

transfer step is biologically plausible, we can still effectively learn from the known network and make47

biologically relevant predictions of interactions. Indeed, as we detail in the results, when validated against48

the known (but fractional) data of trophic interactions present between Canadian mammals, our model49

achieves a predictive accuracy of approximately 91%.50

Method description51

The core point of our method is the transfer of knowledge of a known ecological network to predict52

interactions between species for another location for which the network is unknown (or partially known)53

and is summarized in the grey text boxes in fig. 1. The method we develop is, ecologically speaking, a54

“black box,” i.e. an algorithm that can be understood mathematically, but whose component parts are not55

always directly tied to ecological processes. There is a growing realization in machine learning that56
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(unintentional) black box algorithms are not necessarily a bad thing (Holm, 2019), as long as their57

constituent parts can be examined (which is the case with our method). But more importantly, data hold58

more information than we might think; as such, even algorithms that are disconnected from a model can59

make correct guesses most of the time (Halevy et al., 2009); in fact, in an instance of ecological forecasting60

of spatio-temporal systems, model-free approaches (i.e. drawing all of their information from the data)61

outperformed model-informed ones (Perretti et al., 2013).62

Data used for the case study63

We use data from the European metaweb assembled by Maiorano et al. (2020a). This was assembled using64

data extracted from scientific literature (including published papers, books, and grey literature) from the65

last 50 years and includes all terrestrial tetrapods (mammals, breeding birds, reptiles and amphibians)66

occurring on the European sub-continent (and Turkey) - with the caveat that only species introduced in67

historical times and currently naturalized being included. The European metaweb was filtered using the68

Global Biodiversity Information Facility (GBIF) taxonomic backbone (GBIF Secretariat, 2021) so as to69

contain only terrestrial and semi-aquatic mammals. As all species had valid matches to the GBIF70

taxonomy it was used as the backbone for the remaining reconciliation steps namely, the mammalian71

consensus supertree by Upham et al. (2019) (which is used for the knowledge transfer step) and for the72

Canadian species list—which was extracted from the International Union for Conservation of Nature73

(IUCN) checklist, and corresponds to the same selection criteria that was applied by Maiorano et al.74

(2020a) in the European metaweb. After taxonomic cleaning and reconciliation the European metaweb75

has 260 species, and the Canadian species pool 163; of these, 17 (about 4% of the total) are shared, and 8976

species from Canada (54%) had at least one congeneric species in Europe. The similarity for both species77

pools predictably increases with higher taxonomic order, with 19% of shared genera, 47% of shared78

families, and 75% of shared orders; for the last point, Canada and Europe each had a single unique order79

(Didelphimorphia for Canada, Erinaceomorpha for Europe).80

Implementation and code availability81

The entire pipeline is implemented in Julia 1.6 (Bezanson et al., 2017) and is available under the82

permissive MIT License at https://osf.io/2zwqm/. The taxonomic cleanup steps are done using GBIF.jl83
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(Dansereau & Poisot, 2021). The network embedding and analysis is done using EcologicalNetworks.jl84

(Banville et al., 2021; Poisot et al., 2019). The phylogenetic simulations are done using PhyloNetworks.jl85

(Solís-Lemus et al., 2017) and Phylo.jl (Reeve et al., 2016). A complete Project.toml file specifying the86

full tree of dependencies is available alongside the code. This material also includes a fully annotated copy87

of the entire code required to run this project (describing both the intent of the code and discussing some88

technical implementation details), a vignette for every step of the process, and a series of Jupyter89

notebooks with the text and code. The pipeline can be executed on a laptop in a matter of minutes, and90

therefore does not require extensive computational power.91

Step 1: Learning the origin network representation92

The first step in transfer learning is to learn the structure of the original dataset. In order to do so, we rely93

on an approach inspired from representational learning, where we learn a representation of the metaweb94

(in the form of the latent subspaces), rather than a list of interactions (species a eats b). This approach is95

conceptually different from other metaweb-scale predictions (e.g. Albouy et al., 2019), in that the metaweb96

representation is easily transferable. Specifically, we use a Random Dot Product Graph model (hereafter97

RDPG; S. J. Young & Scheinerman, 2007) to create a number of latent variables that can be combined into98

an approximation of the network adjacency matrix. RDPG is known to capture the evolutionary backbone99

of food webs (Dalla Riva & Stouffer, 2016), resulting in strong phylogenetic signal in RDPG results; in100

other words, the latent variables of an RDPG can be mapped onto a phylogenetic tree, and101

phylogenetically similar predators should share phylogenetically similar preys. In addition, recent102

advances show that the latent variables produced this way can be used to predict de novo interactions.103

Interestingly, the latent variables do not need to be produced by decomposing the network itself; in a104

recent contribution, Runghen et al. (2021) showed that deep artificial neural networks are able to105

reconstruct the left and right subspaces of an RDPG, in order to predict human movement networks from106

individual/location metadata and opens up the possibility of using additional metadata as predictors.107

The latent variables are created by performing a truncated Singular Value Decomposition (t-SVD; Halko et108

al., 2011) on the adjacency matrix. SVD is an appropriate embedding of ecological networks, which has109

recently been shown to both capture their complex, emerging properties (Strydom, Dalla Riva, et al., 2021)110

and to allow highly accurate prediction of the interactions within a single network (Poisot, Ouellet, et al.,111

2021). Under SVD, an adjacency matrix 𝐀 (where 𝐀𝑚,𝑛 ∈ 𝔹 where 1 indicates predation and 0 an absence112
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thereof) is decomposed into three components resulting in 𝐀 = 𝐔𝚺𝐕′. Here, 𝚺 is a𝑚 × 𝑛 diagonal matrix113

and contains only singular (𝜎) values along its diagonal,𝐔 is a𝑚 ×𝑚 unitary matrix, and 𝐕′ a 𝑛 × 𝑛114

unitary matrix. Truncating the SVD removes additional noise in the dataset by omitting non-zero and/or115

smaller 𝜎 values from 𝚺 using the rank of the matrix. Under a t-SVD 𝐀𝑚,𝑛 is decomposed so that 𝚺 is a116

square 𝑟 × 𝑟 diagonal matrix (with 1 ≤ 𝑟 ≤ 𝑟𝑓𝑢𝑙𝑙 where 𝑟𝑓𝑢𝑙𝑙 is the full rank of 𝐀 and 𝑟 the rank at which we117

truncate the matrix) containing only non-zero 𝜎 values. Additionally,𝐔 is now an𝑚 × 𝑟 semi unitary118

matrix and 𝐕′ an 𝑟 × 𝑛 semi-unitary matrix.119

The specific rank at which the SVD ought to be truncated is a difficult question. The purpose of SVD is to120

remove the noise (expressed at high dimensions) and to focus on the signal (expressed at low dimensions).121

In datasets with a clear signal/noise demarcation, a scree plot of 𝚺 can show a sharp drop at the rank where122

noise starts (Zhu & Ghodsi, 2006). Because the European metaweb is almost entirely known, the amount123

of noise (uncertainty) is low; this is reflected in fig. 2 (left), where the scree plot shows no important drop,124

and in fig. 2 (right) where the proportion of variance explained increases smoothly at higher dimensions.125

For this reason, we default back to a threshold that explains 60% of the variance in the underlying data,126

corresponding to 12 dimensions - i.e. a tradeoff between accuracy and a reduced number of features.127

An RDPG estimates the probability of observing interactions between nodes (species) as a function of the128

nodes’ latent variables, and is a way to turn an SVD (which decompose one matrix into three) into two129

matrices that can be multiplied to provide an approximation of the network. The latent variables used for130

the RDPG, called the left and right subspaces, are defined asℒ = 𝐔
√
𝚺, andℛ =

√
𝚺𝐕′ – using the full131

rank of 𝐀,ℒℛ = 𝐀, and using any smaller rank results inℒℛ ≈ 𝐀. Using a rank of 1 for the t-SVD132

provides a first-order approximation of the network. One advantage of using an RDPG for the network133

reconstruction rather than an SVD is that the number of components to estimate decreases; notably, one134

does not have to estimate the singular values of the SVD. Furthermore, the two subspaces can be directly135

multiplied to yield a network.136

[Figure 2 about here.]137

Because RDPG relies on matrix multiplication, the higher dimensions essentially serve to make specific138

interactions converge towards 0 or 1; therefore, for reasonably low ranks, there is no guarantee that the139

values in the reconstructed network will be within the unit range. In order to determine what constitutes140

an appropriate threshold for probability, we performed the RDPG approach on the European metaweb,141
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and evaluated the probability threshold by treating this as a binary classification problem, specifically142

assuming that both 0 and 1 in the European metaweb are all true. Given the methodological details given143

in Maiorano et al. (2020a) and O’Connor et al. (2020), this seems like a reasonable assumption, although144

one that does not hold for all metawebs. We used the thresholding approach presented in Poisot, Ouellet,145

et al. (2021), and picked a cutoff that maximized Youden’s 𝐽 statistic (a measure of the informedness146

(trust) of predictions; Youden (1950)); the resulting cutoff was 0.22, and gave an accuracy above 0.99. In147

Supp. Mat. 1, we provide several lines of evidence that using the entire network to estimate the threshold148

does not lead to overfitting; that using a subset of species would yield the same threshold; that decreasing149

the quality of the original data by adding or removing interactions would minimally affect the predictive150

accuracy of RDPG applied to the European metaweb; and that the networks reconstructed from artificially151

modified data are reconstructed with the correct ecological properties.152

The left and right subspaces for the European metaweb, accompanied by the threshold for prediction,153

represent the knowledge we seek to transfer. In the next section, we explain how we rely on phylogenetic154

similarity to do so.155

Steps 2 and 3: Transfer learning through phylogenetic relatedness156

In order to transfer the knowledge from the European metaweb to the Canadian species pool, we157

performed ancestral character estimation using a Brownian motion model, which is a conservative158

approach in the absence of strong hypotheses about the nature of phylogenetic signal in the network159

decomposition (Litsios & Salamin, 2012). This uses the estimated feature vectors for the European160

mammals to create a state reconstruction for all species (conceptually something akin to a trait-based161

mammalian phylogeny using latent generality and vulnerability traits) and allows us to impute the162

missing (latent) trait data for the Canadian species that are not already in the European network; as we are163

focused on predicting contemporary interactions, we only retained the values for the tips of the tree. We164

assumed that all traits (i.e. the feature vectors for the left and right subspaces) were independent, which is165

a reasonable assumption as every trait/dimension added to the t-SVD has an additive effect to the one166

before it. Note that the Upham et al. (2019) tree itself has some uncertainty associated to inner nodes of167

the phylogeny. In this case study we have decided to not propagate this uncertainty as it would complexify168

the process. The Brownian motion algorithm returns the average value of the trait, and its upper and169

lower bounds. Because we do not estimate other parameters of the traits’ distributions, we considered that170
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every species trait is represented as a uniform distribution between these bounds. The choice of the171

uniform distribution was made because the algorithm returns a minimum and maximum point estimate172

for the value, and given this information, the uniform distribution is the one with maximum entropy. Had173

all mean parameters estimates been positive, the exponential distribution would have been an alternative,174

but this is not the case for the subspaces of an RDPG. In order to examine the consequences of the choice175

of distribution, we estimated the variance per latent variable per node to use a Normal distribution; as we176

show in Supp. Mat. 2, this decision results in dramatically over-estimating the number and probability of177

interactions, and therefore we keep the discussions in the main text to the uniform case. The inferred left178

and right subspaces for the Canadian species pool (ℒ̂ and ℛ̂) have entries that are distributions,179

representing the range of values for a given species at a given dimension. These objects represent the180

transferred knowledge, which we can use for prediction of the Canadian metaweb.181

Step 4: Probabilistic prediction of the destination network182

The phylogenetic reconstruction of ℒ̂ and ℛ̂ has an associated uncertainty, represented by the breadth of183

the uniform distribution associated to each of their entries. Therefore, we can use this information to184

assemble a probabilisticmetaweb in the sense of Poisot et al. (2016), i.e. in which every interaction is185

represented as a single, independent, Bernoulli event of probability 𝑝.186

[Figure 3 about here.]187

Specifically, we have adopted the following approach. For every entry in ℒ̂ and ℛ̂, we draw a value from188

its distribution. This results in one instance of the possible left (�̂�) and right (�̂�) subspaces for the189

Canadian metaweb. These can be multiplied, to produce one matrix of real values. Because the entries in190

�̂� and �̂� are in the same space whereℒ andℛ were originally predicted, it follows that the threshold 𝜌191

estimated for the European metaweb also applies. We use this information to produce one random192

Canadian metaweb, 𝑁 = ℒ̂ℛ̂′ ≥ 𝜌. As we can see in (fig. 3), the European and Canadian metawebs are193

structurally similar (as would be expected given the biogeographic similarities) and the two (left and right)194

subspaces are distinct i.e. capturing predation (generality) and prey (vulnerability) latent traits.195

Because the intervals around some trait values can be broad (in fact, probably broader than what they196

would actually be, see e.g. Garland et al., 1999), we repeat the above process 2 × 105 times, which results in197
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a probabilistic metaweb 𝑃, where the probability of an interaction (here conveying our degree of trust that198

it exists given the inferred trait distributions) is given by the number of times where it appears across all199

random draws 𝑁, divided by the number of samples. An interaction with 𝑃𝑖,𝑗 = 1means that these two200

species were predicted to interact in all 2 × 105 random draws.201

It must be noted that despite bringing in a large amount of information from the European species pool202

and interactions, the Canadian metaweb has distinct structural properties. Following an approach similar203

to Vermaat et al. (2009), we show in Supp. Mat. 3 that not only can we observe differences in the204

multivariate space between the European and Canadian metawebs, we can also observe differences in the205

same space between random subgraphs from these networks. These results line up with the studies206

spatializing metawebs that have been discussed in the introduction: changes in the species pool are207

driving local structural changes in the networks.208

Data cleanup, discovery, validation, and thresholding209

Once the probabilistic metaweb for Canada has been produced, we followed a number of data inflation210

steps to finalize it. This step is external to the actual transfer learning framework but rather serves as a211

way to augment and validate the predicted metaweb.212

[Figure 4 about here.]213

First, we extracted the network corresponding to the 17 species shared between the European and214

Canadian pools and replaced these interactions with a probability of 0 (non-interaction) or 1 (interaction),215

according to their value in the European metaweb. This represents a minute modification of the inferred216

network (about 0.8% of all species pairs from the Canadian web), but ensures that we are directly re-using217

knowledge from Europe.218

Second, we looked for all species in the Canadian pool known to the Global Biotic Interactions (GloBI)219

database (Poelen et al., 2014), and extracted their known interactions. Because GloBI aggregates observed220

interactions, it is not a networks data source, and therefore the only information we can reliably extract221

from it is that a species pair was reported to interact at least once. This last statement should yet be taken222

with caution, as some sources in GloBI (e.g. Thessen & Parr, 2014) are produced through text analysis, and223

therefore may not document direct evidence of the interaction. Nevertheless, should the predictive model224
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work, we would expect that a majority of interactions known to GloBI would also be predicted. We225

retrieved 366 interactions between mammals from the Canadian species pool from GloBI, 33 of which226

were not predicted by the model; this results in a success rate of 91%. After performing this check, we set227

the probability of all interactions known to GloBI to 1.228

Finally, we downloaded the data from Strong & Leroux (2014), who mined various literature sources to229

identify trophic interactions in Newfoundland. This dataset documented 25 interactions between230

mammals, only two of which were not part of our (Canada-level) predictions, resulting in a success rate of231

92%. These two interactions were added to our predicted metaweb with a probability of 1. A comparison232

of interaction densities for the inferred metaweb, and the Globi and Newfoundland is shown in fig. 4 and a233

table listing all interactions in the predicted Canadian metaweb can be found in the supplementary234

material.235

[Figure 5 about here.]236

Because the confidence intervals on the inferred trait space are probably over-estimates, we decided to237

apply a thresholding step to the interactions after data inflation (see fig. 5 showing the effect of varying the238

cutoff on 𝑃(𝑖 → 𝑗)). Cirtwill & Hambäck (2021) proposed a number of strategies to threshold probabilistic239

networks. Their methodology assumes the underlying data to be tag-based sequencing, which represents240

interactions as co-occurrences of predator and prey within the same tags; this is conceptually identical to241

our Bernoulli-trial based reconstruction of a probabilistic network. We performed a full analysis of the242

effect of various cutoffs, and as they either resulted in removing too few interactions, or removing enough243

interactions that species started to be disconnected from the network, we set this threshold for a244

probability equivalent to 0 to the largest possible value that still allowed all species to have at least one245

interaction with a non-zero probability. The need for this slight deviation from the Cirtwill & Hambäck246

(2021) methodology highlights the need for additional development on network thresholding.247

Results and discussion248

[Figure 6 about here.]249

Using a transfer learning framework we were able to construct a probabilistic metaweb and (as per Dunne,250

2006) is a list of potential interactions, meaning that they will not necessarily be realized wherever the two251
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species co-occur. The t-SVD embedding is able to learn relevant ecological features for the network. fig. 6252

shows that the first rank correlates linearly with generality and vulnerability (Schoener, 1989), i.e. the253

number of preys and predators for each species. Importantly, this implies that a rank 1 approximation254

represents the configuration model for the metaweb, i.e. a set of random networks generated from a given255

degree sequence (Park & Newman, 2004). Accounting for the probabilistic nature of the degrees, the rank256

1 approximation also represents the soft configuration model (van der Hoorn et al., 2018). Both models are257

maximum entropy graph models (Garlaschelli et al., 2018), with sharp (all network realizations satisfy the258

specified degree sequence) and soft (network realizations satisfy the degree sequence on average) local259

constraints, respectively. The (soft) configuration model is an unbiased random graph model widely used260

by ecologists in the context of null hypothesis significance testing of network structure (e.g. Bascompte et261

al., 2003) and can provide informative priors for Bayesian inference of network structure (e.g. J.-G. Young262

et al., 2021). It is noteworthy that for this metaweb, the relevant information was extracted at the first263

rank. Because the first rank corresponds to the leading singular value of the system, the results of fig. 6264

have a straightforward interpretation: degree-based processes are the most important in structuring the265

mammalian food web.266

One important aspect in which Europe and Canada differ (despite their comparable bioclimatic267

conditions) is the degree of the legacy of human impacts, which have been much longer in Europe.268

Nenzén et al. (2014) showed that even at small scales (the Iberian peninsula), mammal food webs retain269

the signal of both past climate change and human activity, even when this human activity was orders of270

magnitude less important than it is now. Similarly, Yeakel et al. (2014) showed that changes in human271

occupation over several centuries can lead to food web collapse. Megafauna in particular seems to be very272

sensitive to human arrival (Pires et al., 2015). In short, there is well-substantiated support for the idea that273

human footprint affects more than the risk of species extinction (Marco et al., 2018), and can lead to274

changes in interaction structure.275

Cirtwill et al. (2019) showed that network inference techniques based on Bayesian approaches would276

perform far better in the presence of an interaction-level informative prior; the desirable properties of such277

a prior would be that it is expressed as a probability, preferably representing a Bernoulli event, the value of278

which would be representative of relevant biological processes (probability of predation in this case). We279

argue that the probability returned at the very last step of our framework may serve as this informative280

prior; indeed, the output of our analysis can be used in subsequent steps, also possibly involving expert281
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elicitation to validate some of the most strongly recommended interactions. One important caveat to keep282

in mind when working with interaction inference is that interactions can never really be true negatives (in283

the current state of our methodological framework and data collection limitations); this renders the task of284

validating a model through the usual application of binary classification statistics very difficult (although285

see Strydom, Catchen, et al., 2021 for a discussion of alternative suggestions). The other way through286

which our framework can be improved is by substituting the predictors that are used for transfer. For287

example, in the presence of information on species traits that are known to be predictive of species288

interactions, one might want to rely on functional rather than phylogenetic distances – in food webs, body289

size (and allometrically related variables) has been established as such a variable (Brose et al., 2006); the290

identification of relevant functional traits is facilitated by recent methodological developments (Rosado et291

al., 2013).292

Finally, it should be noted that the framework we have presented is amenable to changes lending to293

applicability to a broad range of potential scenarios. For example in this case study we have embedded the294

original metaweb using t-SVD, because it lends itself to an RDPG reconstruction, which is known to295

capture the consequences of evolutionary processes (Dalla Riva & Stouffer, 2016); this being said, there are296

other ways to embed graphs (Arsov & Mirceva, 2019; Cai et al., 2017; Cao et al., 2019), which can be used297

as alternatives. Regarding the transfer step it is possible to use distinct trees if working with distinct clades298

(such as pollination networks) or an alternative measure of similarity (transfer medium) such as299

information on foraging (Beckerman et al., 2006), cell-level mechanisms (Boeckaerts et al., 2021), or a300

combination of traits and phylogenetic structure (Stock, 2021). Most importantly, although we focus on a301

trophic system, it is an established fact that different (non-trophic) interactions do themselves interact with302

and influence the outcome of trophic interactions (see e.g. Kawatsu et al., 2021; Kéfi et al., 2012). Future303

development of metaweb inference techniques should cover the prediction of multiple interaction types.304
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Science Challenge, administered by New Zealand Ministry of Business, Innovation, and Employment. BM313

is funded by the NSERC Alexander Graham Bell Canada Graduate Scholarship and the FRQNT master’s314

scholarship. LP acknowledges funding from NSERC Discovery Grant (NSERC RGPIN-2019-05771). TP315

acknowledges financial support from NSERC through the Discovery Grants and Discovery Accelerator316

Supplement programs. MJF is supported by an NSERC PDF and an RBC Post-Doctoral Fellowship317

Conflict of interest: The authors have no conflict interests to disclose318

Authors’ contributions: TS, SB, and TP designed the study and performed the analysis; GVDR, MF, and319

RR provided additional feedback on the analyses. DC, BM, and FB helped with data collection. All320

authors contributed to writing and editing the manuscript.321

Data availability: All code and data used in this manuscript is publicly available and archived on OSF322

https://osf.io/2zwqm/ and is currently referenced in the manuscript.323

References324

Albouy, C., Archambault, P., Appeltans, W., Araújo, M. B., Beauchesne, D., Cazelles, K., Cirtwill, A. R.,325

Fortin, M.-J., Galiana, N., Leroux, S. J., Pellissier, L., Poisot, T., Stouffer, D. B., Wood, S. A., & Gravel, D.326

(2019). The marine fish food web is globally connected. Nature Ecology & Evolution, 3(8, 8),327

1153–1161. https://doi.org/10.1038/s41559-019-0950-y328

Arsov, N., & Mirceva, G. (2019, November 26). Network Embedding: An Overview.329

http://arxiv.org/abs/1911.11726330

Banville, F., Vissault, S., & Poisot, T. (2021). Mangal.jl and EcologicalNetworks.jl: Two complementary331

packages for analyzing ecological networks in Julia. Journal of Open Source Software, 6(61), 2721.332

https://doi.org/10.21105/joss.02721333

Bascompte, J., Jordano, P., Melian, C. J., & Olesen, J. M. (2003). The nested assembly of plant-animal334

mutualistic networks. Proceedings of the National Academy of Sciences, 100(16), 9383–9387.335

https://doi.org/10.1073/pnas.1633576100336

Beckerman, A. P., Petchey, O. L., & Warren, P. H. (2006). Foraging biology predicts food web complexity.337

Proceedings of the National Academy of Sciences, 103(37), 13745–13749.338

14 of 21

https://osf.io/2zwqm/
https://doi.org/10.1038/s41559-019-0950-y
http://arxiv.org/abs/1911.11726
https://doi.org/10.21105/joss.02721
https://doi.org/10.1073/pnas.1633576100


https://doi.org/10.1073/pnas.0603039103339

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. (2017). Julia: A Fresh Approach to Numerical340

Computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671341

Boeckaerts, D., Stock, M., Criel, B., Gerstmans, H., De Baets, B., & Briers, Y. (2021). Predicting342

bacteriophage hosts based on sequences of annotated receptor-binding proteins. Scientific Reports,343

11(1, 1), 1467. https://doi.org/10.1038/s41598-021-81063-4344

Braga, M. P., Janz, N., Nylin, S., Ronquist, F., & Landis, M. J. (2021). Phylogenetic reconstruction of345

ancestral ecological networks through time for pierid butterflies and their host plants. Ecology Letters,346

n/a(n/a). https://doi.org/10.1111/ele.13842347

Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T., & Stouffer, D. B. (2018). Identifying a common348

backbone of interactions underlying food webs from different ecosystems. Nature Communications,349

9(1), 2603. https://doi.org/10.1038/s41467-018-05056-0350

Brose, U., Jonsson, T., Berlow, E. L., Warren, P., Banasek-Richter, C., Bersier, L.-F., Blanchard, J. L., Brey,351

T., Carpenter, S. R., Blandenier, M.-F. C., Cushing, L., Dawah, H. A., Dell, T., Edwards, F.,352

Harper-Smith, S., Jacob, U., Ledger, M. E., Martinez, N. D., Memmott, J., . . . Cohen, J. E. (2006).353

ConsumerResource Body-Size Relationships in Natural Food Webs. Ecology, 87(10), 2411–2417.354

https://doi.org/10.1890/0012-9658(2006)87%5B2411:CBRINF%5D2.0.CO;2355

Cai, H., Zheng, V. W., & Chang, K. C.-C. (2017). A Comprehensive Survey of Graph Embedding: Problems,356

Techniques and Applications. http://arxiv.org/abs/1709.07604357

Cameron, E. K., Sundqvist, M. K., Keith, S. A., CaraDonna, P. J., Mousing, E. A., Nilsson, K. A., Metcalfe,358

D. B., & Classen, A. T. (2019). Uneven global distribution of food web studies under climate change.359

Ecosphere, 10(3), e02645. https://doi.org/10.1002/ecs2.2645360

Cao, R.-M., Liu, S.-Y., & Xu, X.-K. (2019). Network embedding for link prediction: The pitfall and361

improvement. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(10), 103102.362

https://doi.org/10.1063/1.5120724363

Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community364

ecology and phylogenetic biology. Ecology Letters, 12(7), 693–715.365

https://doi.org/10.1111/j.1461-0248.2009.01314.x366

15 of 21

https://doi.org/10.1073/pnas.0603039103
https://doi.org/10.1137/141000671
https://doi.org/10.1038/s41598-021-81063-4
https://doi.org/10.1111/ele.13842
https://doi.org/10.1038/s41467-018-05056-0
https://doi.org/10.1890/0012-9658(2006)87%5B2411:CBRINF%5D2.0.CO;2
http://arxiv.org/abs/1709.07604
https://doi.org/10.1002/ecs2.2645
https://doi.org/10.1063/1.5120724
https://doi.org/10.1111/j.1461-0248.2009.01314.x


Cirtwill, A. R., Ekl, A., Roslin, T., Wootton, K., & Gravel, D. (2019). A quantitative framework for367

investigating the reliability of empirical network construction. Methods in Ecology and Evolution, 0.368

https://doi.org/10.1111/2041-210X.13180369

Cirtwill, A. R., & Hambäck, P. (2021). Building food networks from molecular data: Bayesian or370

fixed-number thresholds for including links. Basic and Applied Ecology, 50, 67–76.371

https://doi.org/10.1016/j.baae.2020.11.007372

Dalla Riva, G. V., & Stouffer, D. B. (2016). Exploring the evolutionary signature of food webs’ backbones373

using functional traits. Oikos, 125(4), 446–456. https://doi.org/10.1111/oik.02305374

Dansereau, G., & Poisot, T. (2021). SimpleSDMLayers.jl and GBIF.jl: A Framework for Species375

Distribution Modeling in Julia. Journal of Open Source Software, 6(57), 2872.376

https://doi.org/10.21105/joss.02872377

Dormann, C. F., Gruber, B., Winter, M., & Herrmann, D. (2010). Evolution of climate niches in European378

mammals? Biology Letters, 6(2), 229–232. https://doi.org/10.1098/rsbl.2009.0688379

Dunne, J. A. (2006). The Network Structure of Food Webs. In J. A. Dunne & M. Pascual (Eds.), Ecological380

networks: Linking structure and dynamics (pp. 27–86). Oxford University Press.381

Eklöf, A., & Stouffer, D. B. (2016). The phylogenetic component of food web structure and intervality.382

Theoretical Ecology, 9(1), 107–115. https://doi.org/10.1007/s12080-015-0273-9383

Garland, T., JR., Midford, P. E., & Ives, A. R. (1999). An Introduction to Phylogenetically Based Statistical384

Methods, with a New Method for Confidence Intervals on Ancestral Values1. American Zoologist,385

39(2), 374–388. https://doi.org/10.1093/icb/39.2.374386

Garlaschelli, D., Hollander, F. den, & Roccaverde, A. (2018). Covariance structure behind breaking of387

ensemble equivalence in random graphs. Journal of Statistical Physics, 173(3-4), 644–662.388

https://doi.org/10.1007/s10955-018-2114-x389

GBIF Secretariat. (2021). GBIF Backbone Taxonomy. https://doi.org/10.15468/39omei390

Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not391

proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600–614.392

https://doi.org/10.1111/1365-2435.12425393

16 of 21

https://doi.org/10.1111/2041-210X.13180
https://doi.org/10.1016/j.baae.2020.11.007
https://doi.org/10.1111/oik.02305
https://doi.org/10.21105/joss.02872
https://doi.org/10.1098/rsbl.2009.0688
https://doi.org/10.1007/s12080-015-0273-9
https://doi.org/10.1093/icb/39.2.374
https://doi.org/10.1007/s10955-018-2114-x
https://doi.org/10.15468/39omei
https://doi.org/10.1111/1365-2435.12425


Halevy, A., Norvig, P., & Pereira, F. (2009). The Unreasonable Effectiveness of Data. IEEE Intelligent394

Systems, 24(2), 8–12. https://doi.org/10.1109/MIS.2009.36395

Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding Structure with Randomness: Probabilistic396

Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, 53(2), 217–288.397

https://doi.org/10.1137/090771806398

Holm, E. A. (2019). In defense of the black box. Science, 364(6435), 26–27.399

https://doi.org/10.1126/science.aax0162400

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven401

Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and402

Systematics, 46(1), 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400403

Hutchinson, M. C., Cagua, E. F., & Stouffer, D. B. (2017). Cophylogenetic signal is detectable in pollination404

interactions across ecological scales. Ecology, n/a–n/a. https://doi.org/10.1002/ecy.1955405

Jordano, P. (2016a). Chasing Ecological Interactions. PLOS Biol, 14(9), e1002559.406

https://doi.org/10.1371/journal.pbio.1002559407

Jordano, P. (2016b). Sampling networks of ecological interactions. Functional Ecology, 30(12), 1883–1893.408

https://doi.org/10.1111/1365-2435.12763409

Kawatsu, K., Ushio, M., van Veen, F. J. F., & Kondoh, M. (2021). Are networks of trophic interactions410

sufficient for understanding the dynamics of multi-trophic communities? Analysis of a tri-trophic411

insect food-web time-series. Ecology Letters, 24(3), 543–552. https://doi.org/10.1111/ele.13672412

Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., Wood, S. A., Boit, A., Joppa, L. N.,413

Lafferty, K. D., Williams, R. J., Martinez, N. D., Menge, B. A., Blanchette, C. A., Iles, A. C., & Brose, U.414

(2012). More than a meal. . . integrating non-feeding interactions into food webs: More than a meal . . . .415

Ecology Letters, 15(4), 291–300. https://doi.org/10.1111/j.1461-0248.2011.01732.x416

Litsios, G., & Salamin, N. (2012). Effects of Phylogenetic Signal on Ancestral State Reconstruction.417

Systematic Biology, 61(3), 533–538. https://doi.org/10.1093/sysbio/syr124418

Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L., & Thuiller, W. (2020a). TETRA-EU 1.0: A419

species-level trophic metaweb of European tetrapods. Global Ecology and Biogeography, 29(9),420

1452–1457. https://doi.org/10.1111/geb.13138421

17 of 21

https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1137/090771806
https://doi.org/10.1126/science.aax0162
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1002/ecy.1955
https://doi.org/10.1371/journal.pbio.1002559
https://doi.org/10.1111/1365-2435.12763
https://doi.org/10.1111/ele.13672
https://doi.org/10.1111/j.1461-0248.2011.01732.x
https://doi.org/10.1093/sysbio/syr124
https://doi.org/10.1111/geb.13138


Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L., & Thuiller, W. (2020b). Data from:422

Tetra-EU 1.0: A species-level trophic meta-web of European tetrapods (Version 3, pp. 16596876 bytes)423

[Data set]. Dryad. https://doi.org/10.5061/DRYAD.JM63XSJ7B424

Marco, M. D., Venter, O., Possingham, H. P., & Watson, J. E. M. (2018). Changes in human footprint drive425

changes in species extinction risk. Nature Communications, 9(1), 4621.426

https://doi.org/10.1038/s41467-018-07049-5427

Morales-Castilla, I., Matias, M. G., Gravel, D., & Araújo, M. B. (2015). Inferring biotic interactions from428

proxies. Trends in Ecology & Evolution, 30(6), 347–356.429

https://doi.org/10.1016/j.tree.2015.03.014430

Mouquet, N., Devictor, V., Meynard, C. N., Munoz, F., Bersier, L.-F., Chave, J., Couteron, P., Dalecky, A.,431

Fontaine, C., Gravel, D., Hardy, O. J., Jabot, F., Lavergne, S., Leibold, M., Mouillot, D., Münkemüller,432

T., Pavoine, S., Prinzing, A., Rodrigues, A. S. L., . . . Thuiller, W. (2012). Ecophylogenetics: Advances433

and perspectives. Biological Reviews, 87(4), 769–785.434

https://doi.org/10.1111/j.1469-185X.2012.00224.x435

Nenzén, H. K., Montoya, D., & Varela, S. (2014). The Impact of 850,000 Years of Climate Changes on the436

Structure and Dynamics of Mammal Food Webs. PLOS ONE, 9(9), e106651.437

https://doi.org/10.1371/journal.pone.0106651438

O’Connor, L. M. J., Pollock, L. J., Braga, J., Ficetola, G. F., Maiorano, L., Martinez-Almoyna, C.,439

Montemaggiori, A., Ohlmann, M., & Thuiller, W. (2020). Unveiling the food webs of tetrapods across440

Europe through the prism of the Eltonian niche. Journal of Biogeography, 47(1), 181–192.441

https://doi.org/10.1111/jbi.13773442

Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data443

Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191444

Park, J., & Newman, M. E. J. (2004). Statistical mechanics of networks. Physical Review E, 70(6), 066117.445

https://doi.org/10.1103/PhysRevE.70.066117446

Perretti, C. T., Munch, S. B., & Sugihara, G. (2013). Model-free forecasting outperforms the correct447

mechanistic model for simulated and experimental data. Proceedings of the National Academy of448

Sciences, 110(13), 5253–5257. https://doi.org/10.1073/pnas.1216076110449

18 of 21

https://doi.org/10.5061/DRYAD.JM63XSJ7B
https://doi.org/10.1038/s41467-018-07049-5
https://doi.org/10.1016/j.tree.2015.03.014
https://doi.org/10.1111/j.1469-185X.2012.00224.x
https://doi.org/10.1371/journal.pone.0106651
https://doi.org/10.1111/jbi.13773
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1073/pnas.1216076110


Pires, M. M., Koch, P. L., Fariña, R. A., de Aguiar, M. A. M., dos Reis, S. F., & Guimarães, P. R. (2015).450

Pleistocene megafaunal interaction networks became more vulnerable after human arrival.451

Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151367.452

https://doi.org/10.1098/rspb.2015.1367453

Poelen, J. H., Simons, J. D., & Mungall, C. J. (2014). Global biotic interactions: An open infrastructure to454

share and analyze species-interaction datasets. Ecological Informatics, 24, 148–159.455

https://doi.org/10.1016/j.ecoinf.2014.08.005456

Poisot, T., Belisle, Z., Hoebeke, L., Stock, M., & Szefer, P. (2019). EcologicalNetworks.jl - analysing457

ecological networks. Ecography. https://doi.org/10.1111/ecog.04310458

Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., MacDonald, A., Mercier, B., Violet, C., &459

Vissault, S. (2021). Global knowledge gaps in species interaction networks data. Journal of460

Biogeography, n/a(n/a). https://doi.org/10.1111/jbi.14127461

Poisot, T., Cirtwill, A. R., Cazelles, K., Gravel, D., Fortin, M.-J., & Stouffer, D. B. (2016). The structure of462

probabilistic networks. Methods in Ecology and Evolution, 7(3), 303–312.463

https://doi.org/10.1111/2041-210X.12468464

Poisot, T., Ouellet, M.-A., Mollentze, N., Farrell, M. J., Becker, D. J., Albery, G. F., Gibb, R. J., Seifert, S. N.,465

& Carlson, C. J. (2021, May 31). Imputing the mammalian virome with linear filtering and singular466

value decomposition. http://arxiv.org/abs/2105.14973467

Poisot, T., & Stouffer, D. B. (2018). Interactions retain the co-phylogenetic matching that communities lost.468

Oikos, 127(2), 230–238. https://doi.org/10.1111/oik.03788469

Price, P. W. (2003). Macroevolutionary theory on macroecological patterns. Cambridge University Press.470

Reeve, R., Leinster, T., Cobbold, C. A., Thompson, J., Brummitt, N., Mitchell, S. N., & Matthews, L. (2016,471

December 8). How to partition diversity. http://arxiv.org/abs/1404.6520472

Rosado, B. H. P., Dias, A., & de Mattos, E. (2013). Going Back to Basics: Importance of Ecophysiology473

when Choosing Functional Traits for Studying Communities and Ecosystems. Natureza &474

Conservaç~ao Revista Brasileira de Conservaç~ao Da Natureza, 11, 15–22.475

https://doi.org/10.4322/natcon.2013.002476

Runghen, R., Stouffer, D. B., & Dalla Riva, G. V. (2021). Exploiting node metadata to predict interactions in477

19 of 21

https://doi.org/10.1098/rspb.2015.1367
https://doi.org/10.1016/j.ecoinf.2014.08.005
https://doi.org/10.1111/ecog.04310
https://doi.org/10.1111/jbi.14127
https://doi.org/10.1111/2041-210X.12468
http://arxiv.org/abs/2105.14973
https://doi.org/10.1111/oik.03788
http://arxiv.org/abs/1404.6520
https://doi.org/10.4322/natcon.2013.002


large networks using graph embedding and neural networks.478

https://doi.org/10.1101/2021.06.10.447991479

Schoener, T. W. (1989). Food webs from the small to the large. Ecology, 70(6), 1559–1589.480

Solís-Lemus, C., Bastide, P., & Ané, C. (2017). PhyloNetworks: A Package for Phylogenetic Networks.481

Molecular Biology and Evolution, 34(12), 3292–3298. https://doi.org/10.1093/molbev/msx235482

Stock, M. (2021). Pairwise learning for predicting pollination interactions based on traits and phylogeny.483

Ecological Modelling, 14.484

Stouffer, D. B., Sales-Pardo, M., Sirer, M. I., & Bascompte, J. (2012). Evolutionary Conservation of Species’485

Roles in Food Webs. Science, 335(6075), 1489–1492. https://doi.org/10.1126/science.1216556486

Strong, J. S., & Leroux, S. J. (2014). Impact of Non-Native Terrestrial Mammals on the Structure of the487

Terrestrial Mammal Food Web of Newfoundland, Canada. PLOS ONE, 9(8), e106264.488

https://doi.org/10.1371/journal.pone.0106264489

Strydom, T., Catchen, M. D., Banville, F., Caron, D., Dansereau, G., Desjardins-Proulx, P., Forero-Muñoz,490

N. R., Higino, G., Mercier, B., Gonzalez, A., Gravel, D., Pollock, L., & Poisot, T. (2021). A roadmap491

towards predicting species interaction networks (across space and time). Philosophical Transactions of492

the Royal Society B: Biological Sciences, 376(1837), 20210063.493

https://doi.org/10.1098/rstb.2021.0063494

Strydom, T., Dalla Riva, G. V., & Poisot, T. (2021). SVD Entropy Reveals the High Complexity of Ecological495

Networks. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.623141496

Thessen, A. E., & Parr, C. S. (2014). Knowledge extraction and semantic annotation of text from the497

encyclopedia of life. PloS One, 9(3), e89550.498

Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning499

applications and trends: Algorithms, methods, and techniques (pp. 242–264). IGI global.500

Trøjelsgaard, K., & Olesen, J. M. (2016). Ecological networks in motion: Micro- and macroscopic501

variability across scales. Functional Ecology, 30(12), 1926–1935.502

https://doi.org/10.1111/1365-2435.12710503

Upham, N. S., Esselstyn, J. A., & Jetz, W. (2019). Inferring the mammal tree: Species-level sets of504

phylogenies for questions in ecology, evolution, and conservation. PLOS Biology, 17(12), e3000494.505

20 of 21

https://doi.org/10.1101/2021.06.10.447991
https://doi.org/10.1093/molbev/msx235
https://doi.org/10.1126/science.1216556
https://doi.org/10.1371/journal.pone.0106264
https://doi.org/10.1098/rstb.2021.0063
https://doi.org/10.3389/fevo.2021.623141
https://doi.org/10.1111/1365-2435.12710


https://doi.org/10.1371/journal.pbio.3000494506

van der Hoorn, P., Lippner, G., & Krioukov, D. (2018). Sparse Maximum-Entropy Random Graphs with a507

Given Power-Law Degree Distribution. Journal of Statistical Physics, 173(3-4), 806–844.508

https://doi.org/10.1007/s10955-017-1887-7509

Vermaat, J. E., Dunne, J. A., & Gilbert, A. J. (2009). Major dimensions in food-web structure properties.510

Ecology, 90(1), 278–282. http://www.ncbi.nlm.nih.gov/pubmed/19294932511

Yeakel, J. D., Pires, M. M., Rudolf, L., Dominy, N. J., Koch, P. L., Guimarães, P. R., & Gross, T. (2014).512

Collapse of an ecological network in Ancient Egypt. PNAS, 111(40), 14472–14477.513

https://doi.org/10.1073/pnas.1408471111514

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.515

https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3516

Young, J.-G., Cantwell, G. T., & Newman, M. E. J. (2021). Bayesian inference of network structure from517

unreliable data. Journal of Complex Networks, 8(6). https://doi.org/10.1093/comnet/cnaa046518

Young, S. J., & Scheinerman, E. R. (2007). Random Dot Product Graph Models for Social Networks. In A.519

Bonato & F. R. K. Chung (Eds.), Algorithms and Models for the Web-Graph (pp. 138–149). Springer.520

https://doi.org/10.1007/978-3-540-77004-6_11521

Zhu, M., & Ghodsi, A. (2006). Automatic dimensionality selection from the scree plot via the use of profile522

likelihood. Computational Statistics & Data Analysis, 51(2), 918–930.523

https://doi.org/10.1016/j.csda.2005.09.010524

21 of 21

https://doi.org/10.1371/journal.pbio.3000494
https://doi.org/10.1007/s10955-017-1887-7
http://www.ncbi.nlm.nih.gov/pubmed/19294932
https://doi.org/10.1073/pnas.1408471111
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
https://doi.org/10.1093/comnet/cnaa046
https://doi.org/10.1007/978-3-540-77004-6_11
https://doi.org/10.1016/j.csda.2005.09.010


Figure 1: Overview of the phylogenetic transfer learning (and prediction) of species interactions networks.
Starting from an initial, known, network, we learn its representation through a graph embedding step (here,
a truncated Singular Value Decomposition; Step 1), yielding a series of latent traits (latent vulnerability
traits are more representative of species at the lower trophic-level and latent generality traits are more
representative of species at higher trophic-levels; sensu Schoener (1989)); second, for the destination species
pool, we perform ancestral character estimation using a phylogeny (here, using a Brownian model for the
latent traits; Step 2); we then sample from the reconstructed distribution of latent traits (Step 3) to generate
a probabilistic metaweb at the destination (here, assuming a uniform distribution of traits), and threshold
it to yield the final list of interactions (Step 4).
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Figure 2: Left: representation of the scree plot of the singular values from the t-SVD on the European
metaweb. The scree plot showsno obvious drop in the singular values thatmay be leveraged to automatically
detect a minimal dimension for embedding, after e.g. Zhu & Ghodsi (2006). Right: cumulative fraction of
variance explained by each dimension up to the rank of the European metaweb. The grey lines represent
cutoffs at 50, 60, . . . , 90% of variance explained. For the rest of the analysis, we reverted to an arbitrary
threshold of 60% of variance explained, which represented a good tradeoff between accuracy and reduced
number of features.
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Figure 3: Visual representation of the left (green/purple; left-side matrix) and right (green/brown; top
matrix) subspaces, alongside the adjacency matrix of the food web they encode (greyscale). Where the
color saturation is the magnitude of the latent trait value. The European metaweb is on the left, and the
imputed Canadian metaweb (before data inflation) on the right. This figure illustrates howmuch structure
the left subspace captures. As we show in fig. 6, the species with a value of 0 in the left subspace are species
without any prey.
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Figure 4: Left: comparison of the probabilities of interactions assigned by themodel to all interactions (grey
curve), the subset of interactions found in GloBI (red), and in the Strong & Leroux (2014) Newfoundland
dataset (blue). Themodel recoversmore interactionswith a lowprobability compared to datamining, which
can suggest that collected datasets are biased towards more common or easy to identify interactions. Right:
distribution of the in-degree and out-degree of the mammals from Canada in the reconstructed metaweb,
where the rank is the maximal number of linearly independent columns (interactions) in the metaweb.
This figure describes a flat, relatively short food web, in which there are few predators but a large number
of preys.
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Figure 5: Left: effect of varying the cutoff for probabilities to be considered non-zero on the number of
unique links and on �̂�, the probabilistic estimate of the number of links assuming that all interactions are
independent. Right: effect of varying the cutoff on the number of disconnected species, and on network
connectance. In both panels, the grey line indicates the cutoff 𝑃(𝑖 → 𝑗) ≈ 0.08 that resulted in the first
species losing all of its interactions.

26 of 21



Figure 6: Top: biological significance of the first dimension. Left: there is a linear relationship between the
values on the first dimension of the left subspace and the generality, i.e. the relative number of preys, sensu
Schoener (1989). Species with a value of 0 in this subspace are at the bottom-most trophic level. Right:
there is, similarly, a linear relationship between the position of a species on the first dimension of the right
subspace and its vulnerability, i.e. the relative number of predators. Taken together, these two figures show
that the first-order representation of this networkwould capture its degree distribution. Bottom: topological
consequences of the first dimension. Left: differences in the 𝑧-scores of the actual configuration model for
the reconstructed network and the prediction based only on the first dimension (with a deeper saturation
indicating a bigger difference in scores). Right: distribution of the differences in the left panel.
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