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1. Despite their importance in many ecological processes, collecting data and information on eco-
logical interactions is an exceedingly challenging task. For this reason, large parts of the world
have a data deficit when it comes to species interactions, and how the resulting networks are
structured. As data collection alone is unlikely to be sufficient, community ecologists must adopt
predictive methods.

2. We present a methodological framework that uses graph embedding and transfer learning to as-
semble a predicted list of trophic interactions of a species pool for which their interactions are
unknown. Specifically, we ‘learn’ the information (latent traits) of species from a known inter-
action network and infer the latent traits of another species pool for which we have no a priori
interaction data based on their phylogenetic relatedness to species from the known network. The
latent traits can then be used to predict interactions and construct an interaction network.

3. Here we assembled a metaweb for Canadian mammals derived from interactions in the Euro-
pean food web, despite only 4% of common species being shared between the two locations. The
results of the predictive model are compared against databases of recorded pairwise interactions,
showing that we correctly recover 91% of known interactions.

4. The framework itself is robust even when the known network is incomplete or contains spuri-
ous interactions making it an ideal candidate as a tool for filling gaps when it comes to species
interactions. We provide guidance on how this framework can be adapted by substituting some
approaches or predictors in order to make it more generally applicable.

1

Introduction

There are two core challenges we are faced with in furthering our understanding of ecological networks
across space, particularly at macro-ecologically relevant scales (e.g. Trøjelsgaard & Olesen, 2016). First,
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Figure 1 Overview of the phylogenetic trans-
fer learning (and prediction) of species inter-
actions networks. Starting from an initial,
known, network, we learn its representation
through a graph embedding step (here, a trun-
cated Singular Value Decomposition; Step 1),
yielding a series of latent traits (latent vulnera-
bility traits are more representative of species
at the lower trophic-level and latent general-
ity traits are more representative of species at
higher trophic-levels; sensu Schoener (1989));
second, for the destination species pool, we
perform ancestral character estimation using a
phylogeny (here, using a Brownian model for
the latent traits; Step 2); we then sample from
the reconstructed distribution of latent traits
(Step 3) to generate a probabilistic metaweb at
the destination (here, assuming a uniform dis-
tribution of traits), and threshold it to yield the
final list of interactions (Step 4).

ecological networks within a location are difficult to sample properly (Jordano, 2016a, 2016b), resulting
in a widespread “Eltonian shortfall” (Hortal et al., 2015), i.e. a lack of knowledge about inter- and intra-
specific relationships. This first challenge has been, in large part, addressed by the recent emergence of
a suite of methods aiming to predict interactions within existing networks, many of which are reviewed
in Strydom, Catchen, et al. (2021). Second, recent analyses based on collected data (Poisot, Bergeron,
et al., 2021) or metadata (Cameron et al., 2019) highlight that ecological networks are currently studied
in a biased subset of space and bioclimates, which impedes our ability to generalize any local under-
standing of network structure. Meaning that, although the framework to address incompletenesswithin
networks exists, there would still be regions for which, due to a lack of local interaction data, we are
unable to infer potential species interactions.

Here, we present a general method to infer potential trophic interactions, relying on the transfer learn-
ing of network representations, specifically by using similarities of species in a biologically/ecologically
relevant proxy space (e.g. shared morphology or ancestry). Transfer learning is a machine learning
methodology that uses the knowledge gained from solving one problem and applying it to a related
(destination) problem (Pan & Yang, 2010; Torrey & Shavlik, 2010). In this instance, we solve the prob-
lem of predicting trophic interactions between species, based on knowledge extracted from another
species pool for which interactions are known by using phylogenetic structure as a medium for trans-
fer. There is a plurality of measures of species similarities that can be used for inferring potential species
interactions i.e. metaweb reconstruction (see e.g. Morales-Castilla et al., 2015); however, phylogenetic
proximity has several desirable properties when working at large scales. Gerhold et al. (2015) made the
point that phylogenetic signal captures diversification of characters (largemacro-evolutionary process),
but not necessarily community assembly (fine ecological process); Dormann et al. (2010) previously
found very similar conclusions. Interactions tend to reflect a phylogenetic signal because they have a
conserved pattern of evolutionary convergence that encompasses a wide range of ecological and evolu-
tionary mechanisms (Cavender-Bares et al., 2009; Mouquet et al., 2012), and - most importantly - retain
this signal even if it is obscured at the community scale due to e.g. local conditions (Hutchinson et al.,
2017; Poisot & Stouffer, 2018). Finally, species interactions at macro-ecological scales seem to respond
mostly to macro-evolutionary processes (Price, 2003); which is evidenced by the presence of conserved
backbones in food webs (Bramon Mora et al., 2018; Dalla Riva & Stouffer, 2016), strong evolutionary
signature on prey choice (Stouffer et al., 2012), and strong phylogenetic signature in food web inter-
vality (Eklöf & Stouffer, 2016). Phylogenetic reconstruction has also previously been used within the
context of ecological networks, namely understanding ancestral plant-insect interactions (Braga et al.,
2021). Taken together, these considerations suggest that phylogenies can reliably be used to transfer
knowledge on species interactions.

In fig. 1, we provide a methodological overview based on learning the embedding of a metaweb of
trophic interactions for European mammals (known interactions; Maiorano et al., 2020a, 2020b) and,
based on phylogenetic relationships between mammals globally (i.e., phylogenetic tree Upham et al.,
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2019), infer a metaweb for the Canadian mammalian species pool (using only a species list i.e. we have
no prior data on species interaction data for Canada in this instance). Our case study shows that phy-
logenetic transfer learning is an effective approach to the generation of probabilistic metawebs. This
showcases that although the components (species) that make up the Canadian and European commu-
nities may beminimally shared (the overall species overlap is less than 4%), if themedium (proxy space)
selected in the transfer step is biologically plausible, we can still effectively learn from the known net-
work and make biologically relevant predictions of interactions. Indeed, as we detail in the results,
when validated against the known (but fractional) data of trophic interactions present between Cana-
dian mammals, our model achieves a predictive accuracy of approximately 91%.

2

Method description

The core point of our method is the transfer of knowledge of a known ecological network to predict in-
teractions between species for another location for which the network is unknown (or partially known)
and is summarized in the grey text boxes in fig. 1. The method we develop is, ecologically speaking, a
“black box,” i.e. an algorithm that can be understood mathematically, but whose component parts are
not always directly tied to ecological processes. There is a growing realization in machine learning that
(unintentional) black box algorithms are not necessarily a bad thing (Holm, 2019), as long as their con-
stituent parts can be examined (which is the case with our method). But more importantly, data hold
more information than we might think; as such, even algorithms that are disconnected from a model
canmake correct guesses most of the time (Halevy et al., 2009); in fact, in an instance of ecological fore-
casting of spatio-temporal systems, model-free approaches (i.e. drawing all of their information from
the data) outperformed model-informed ones (Perretti et al., 2013).

2.1. Data used for the case study We use data from the European metaweb assembled by Maiorano
et al. (2020a). This was assembled using data extracted from scientific literature (including published
papers, books, and grey literature) from the last 50 years and includes all terrestrial tetrapods (mammals,
breeding birds, reptiles and amphibians) occurring on the European sub-continent (and Turkey) - with
the caveat that only species introduced in historical times and currently naturalized being included. The
European metaweb was filtered using the Global Biodiversity Information Facility (GBIF) taxonomic
backbone (GBIF Secretariat, 2021) so as to contain only terrestrial and semi-aquatic mammals. As all
species had validmatches to the GBIF taxonomy it was used as the backbone for the remaining reconcil-
iation steps namely, the mammalian consensus supertree by Upham et al. (2019) (which is used for the
knowledge transfer step) and for the Canadian species list—which was extracted from the International
Union for Conservation of Nature (IUCN) checklist, and corresponds to the same selection criteria that
was applied byMaiorano et al. (2020a) in the Europeanmetaweb. After taxonomic cleaning and recon-
ciliation the European metaweb has 260 species, and the Canadian species pool 163; of these, 17 (about
4% of the total) are shared, and 89 species from Canada (54%) had at least one congeneric species in
Europe. The similarity for both species pools predictably increases with higher taxonomic order, with
19% of shared genera, 47% of shared families, and 75% of shared orders; for the last point, Canada and
Europe each had a single unique order (Didelphimorphia for Canada, Erinaceomorpha for Europe).

2.2. Implementation and code availability The entire pipeline is implemented in Julia 1.6 (Bezanson
et al., 2017) and is available under the permissive MIT License at https://osf.io/2zwqm/. The taxo-
nomic cleanup steps are done using GBIF.jl (Dansereau & Poisot, 2021). The network embedding and
analysis is done using EcologicalNetworks.jl (Banville et al., 2021; Poisot et al., 2019). The phylo-
genetic simulations are done using PhyloNetworks.jl (Solís-Lemus et al., 2017) and Phylo.jl (Reeve
et al., 2016). A complete Project.toml file specifying the full tree of dependencies is available along-
side the code. This material also includes a fully annotated copy of the entire code required to run this
project (describing both the intent of the code and discussing some technical implementation details),
a vignette for every step of the process, and a series of Jupyter notebooks with the text and code. The
pipeline can be executed on a laptop in a matter of minutes, and therefore does not require extensive
computational power.

2.3. Step 1: Learning the origin network representation The first step in transfer learning is to
learn the structure of the original dataset. In order to do so, we rely on an approach inspired from
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representational learning, where we learn a representation of the metaweb (in the form of the latent
subspaces), rather than a list of interactions (species a eats b). This approach is conceptually different
from other metaweb-scale predictions (e.g. Albouy et al., 2019), in that the metaweb representation
is easily transferable. Specifically, we use a Random Dot Product Graph model (hereafter RDPG; S. J.
Young & Scheinerman, 2007) to create a number of latent variables that can be combined into an ap-
proximation of the network adjacency matrix. RDPG is known to capture the evolutionary backbone
of food webs (Dalla Riva & Stouffer, 2016), resulting in strong phylogenetic signal in RDPG results; in
other words, the latent variables of an RDPG can be mapped onto a phylogenetic tree, and phylogenet-
ically similar predators should share phylogenetically similar preys. In addition, recent advances show
that the latent variables produced this way can be used to predict de novo interactions. Interestingly, the
latent variables do not need to be produced by decomposing the network itself; in a recent contribution,
Runghen et al. (2021) showed that deep artificial neural networks are able to reconstruct the left and
right subspaces of an RDPG, in order to predict human movement networks from individual/location
metadata and opens up the possibility of using additional metadata as predictors.

The latent variables are created by performing a truncated Singular ValueDecomposition (t-SVD;Halko
et al., 2011) on the adjacency matrix. SVD is an appropriate embedding of ecological networks, which
has recently been shown to both capture their complex, emerging properties (Strydom, Dalla Riva, et
al., 2021) and to allow highly accurate prediction of the interactions within a single network (Poisot,
Ouellet, et al., 2021). Under SVD, an adjacency matrix 𝐀 (where 𝐀𝑚,𝑛 ∈ 𝔹 where 1 indicates predation
and 0 an absence thereof) is decomposed into three components resulting in 𝐀 = 𝐔𝚺𝐕′. Here, 𝚺 is a
𝑚 × 𝑛 diagonal matrix and contains only singular (𝜎) values along its diagonal, 𝐔 is a 𝑚 × 𝑚 unitary
matrix, and 𝐕′ a 𝑛 × 𝑛 unitary matrix. Truncating the SVD removes additional noise in the dataset by
omitting non-zero and/or smaller 𝜎 values from 𝚺 using the rank of the matrix. Under a t-SVD 𝐀𝑚,𝑛 is
decomposed so that 𝚺 is a square 𝑟 × 𝑟 diagonal matrix (with 1 ≤ 𝑟 ≤ 𝑟𝑓𝑢𝑙𝑙 where 𝑟𝑓𝑢𝑙𝑙 is the full rank of
𝐀 and 𝑟 the rank at which we truncate the matrix) containing only non-zero 𝜎 values. Additionally, 𝐔
is now an𝑚 × 𝑟 semi unitary matrix and 𝐕′ an 𝑟 × 𝑛 semi-unitary matrix.

The specific rank at which the SVD ought to be truncated is a difficult question. The purpose of SVD
is to remove the noise (expressed at high dimensions) and to focus on the signal (expressed at low
dimensions). In datasets with a clear signal/noise demarcation, a scree plot of 𝚺 can show a sharp drop
at the rank where noise starts (Zhu & Ghodsi, 2006). Because the European metaweb is almost entirely
known, the amount of noise (uncertainty) is low; this is reflected in fig. 2 (left), where the scree plot
shows no important drop, and in fig. 2 (right) where the proportion of variance explained increases
smoothly at higher dimensions. For this reason, we default back to a threshold that explains 60% of the
variance in the underlying data, corresponding to 12 dimensions - i.e. a tradeoff between accuracy and
a reduced number of features.

An RDPG estimates the probability of observing interactions between nodes (species) as a function of
the nodes’ latent variables, and is a way to turn an SVD (which decompose one matrix into three) into
two matrices that can be multiplied to provide an approximation of the network. The latent variables
used for the RDPG, called the left and right subspaces, are defined as ℒ = 𝐔

√
𝚺, and ℛ =

√
𝚺𝐕′ –

using the full rank of𝐀,ℒℛ = 𝐀, and using any smaller rank results inℒℛ ≈ 𝐀. Using a rank of 1 for
the t-SVD provides a first-order approximation of the network. One advantage of using an RDPG for the
network reconstruction rather than an SVD is that the number of components to estimate decreases;
notably, one does not have to estimate the singular values of the SVD. Furthermore, the two subspaces
can be directly multiplied to yield a network.

Because RDPG relies onmatrix multiplication, the higher dimensions essentially serve tomake specific
interactions converge towards 0 or 1; therefore, for reasonably low ranks, there is no guarantee that the
values in the reconstructed network will be within the unit range. In order to determine what con-
stitutes an appropriate threshold for probability, we performed the RDPG approach on the European
metaweb, and evaluated the probability threshold by treating this as a binary classification problem,
specifically assuming that both 0 and 1 in the European metaweb are all true. Given the methodolog-
ical details given in Maiorano et al. (2020a) and O’Connor et al. (2020), this seems like a reasonable
assumption, although one that does not hold for all metawebs. We used the thresholding approach
presented in Poisot, Ouellet, et al. (2021), and picked a cutoff that maximized Youden’s 𝐽 statistic (a
measure of the informedness (trust) of predictions; Youden (1950)); the resulting cutoff was 0.22, and
gave an accuracy above 0.99. In Supp. Mat. 1, we provide several lines of evidence that using the entire
network to estimate the threshold does not lead to overfitting; that using a subset of species would yield
the same threshold; that decreasing the quality of the original data by adding or removing interactions
would minimally affect the predictive accuracy of RDPG applied to the European metaweb; and that
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Figure 2 Left: representation of the scree
plot of the singular values from the t-SVD on
the European metaweb. The scree plot shows
no obvious drop in the singular values thatmay
be leveraged to automatically detect a mini-
mal dimension for embedding, after e.g. Zhu
& Ghodsi (2006). Right: cumulative fraction
of variance explained by each dimension up to
the rank of the European metaweb. The grey
lines represent cutoffs at 50, 60, . . . , 90% of vari-
ance explained. For the rest of the analysis,
we reverted to an arbitrary threshold of 60% of
variance explained, which represented a good
tradeoff between accuracy and reduced num-
ber of features.

the networks reconstructed from artificially modified data are reconstructed with the correct ecological
properties.

The left and right subspaces for the European metaweb, accompanied by the threshold for prediction,
represent the knowledgewe seek to transfer. In the next section, we explain howwe rely on phylogenetic
similarity to do so.

2.4. Steps 2 and 3: Transfer learning through phylogenetic relatedness In order to transfer the
knowledge from the Europeanmetaweb to the Canadian species pool, we performed ancestral character
estimation using a Brownian motion model, which is a conservative approach in the absence of strong
hypotheses about the nature of phylogenetic signal in the network decomposition (Litsios & Salamin,
2012). This uses the estimated feature vectors for the European mammals to create a state reconstruc-
tion for all species (conceptually something akin to a trait-based mammalian phylogeny using latent
generality and vulnerability traits) and allows us to impute the missing (latent) trait data for the Cana-
dian species that are not already in the European network; as we are focused on predicting contempo-
rary interactions, we only retained the values for the tips of the tree. We assumed that all traits (i.e. the
feature vectors for the left and right subspaces) were independent, which is a reasonable assumption
as every trait/dimension added to the t-SVD has an additive effect to the one before it. Note that the
Upham et al. (2019) tree itself has some uncertainty associated to inner nodes of the phylogeny. In this
case study we have decided to not propagate this uncertainty as it would complexify the process. The
Brownian motion algorithm returns the average value of the trait, and its upper and lower bounds. Be-
cause we do not estimate other parameters of the traits’ distributions, we considered that every species
trait is represented as a uniform distribution between these bounds. The choice of the uniform distribu-
tion was made because the algorithm returns a minimum and maximum point estimate for the value,
and given this information, the uniform distribution is the one with maximum entropy. Had all mean
parameters estimates been positive, the exponential distribution would have been an alternative, but
this is not the case for the subspaces of an RDPG. In order to examine the consequences of the choice of
distribution, we estimated the variance per latent variable per node to use a Normal distribution; as we
show in Supp. Mat. 2, this decision results in dramatically over-estimating the number and probability
of interactions, and therefore we keep the discussions in themain text to the uniform case. The inferred
left and right subspaces for the Canadian species pool (ℒ̂ and ℛ̂) have entries that are distributions,
representing the range of values for a given species at a given dimension. These objects represent the
transferred knowledge, which we can use for prediction of the Canadian metaweb.

2.5. Step 4: Probabilistic prediction of the destination network The phylogenetic reconstruction
of ℒ̂ and ℛ̂ has an associated uncertainty, represented by the breadth of the uniform distribution as-
sociated to each of their entries. Therefore, we can use this information to assemble a probabilistic
metaweb in the sense of Poisot et al. (2016), i.e. in which every interaction is represented as a single,
independent, Bernoulli event of probability 𝑝.
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Figure 3 Visual representation of the left
(green/purple; left-side matrix) and right
(green/brown; top matrix) subspaces, along-
side the adjacency matrix of the food web they
encode (greyscale). Where the color saturation
is the magnitude of the latent trait value.
The European metaweb is on the left, and
the imputed Canadian metaweb (before data
inflation) on the right. This figure illustrates
howmuch structure the left subspace captures.
As we show in fig. 6, the species with a value
of 0 in the left subspace are species without
any prey.

Specifically, we have adopted the following approach. For every entry in ℒ̂ and ℛ̂, we draw a value
from its distribution. This results in one instance of the possible left (�̂�) and right (�̂�) subspaces for the
Canadian metaweb. These can be multiplied, to produce one matrix of real values. Because the entries
in �̂� and �̂� are in the same space whereℒ andℛ were originally predicted, it follows that the threshold
𝜌 estimated for the European metaweb also applies. We use this information to produce one random
Canadianmetaweb,𝑁 = ℒ̂ℛ̂′ ≥ 𝜌. As we can see in (fig. 3), the European and Canadianmetawebs are
structurally similar (as would be expected given the biogeographic similarities) and the two (left and
right) subspaces are distinct i.e. capturing predation (generality) and prey (vulnerability) latent traits.

Because the intervals around some trait values can be broad (in fact, probably broader than what they
would actually be, see e.g. Garland et al., 1999), we repeat the above process 2×105 times, which results
in a probabilistic metaweb 𝑃, where the probability of an interaction (here conveying our degree of
trust that it exists given the inferred trait distributions) is given by the number of times where it appears
across all random draws𝑁, divided by the number of samples. An interaction with 𝑃𝑖,𝑗 = 1means that
these two species were predicted to interact in all 2 × 105 random draws.

It must be noted that despite bringing in a large amount of information from the European species
pool and interactions, the Canadianmetaweb has distinct structural properties. Following an approach
similar to Vermaat et al. (2009), we show in Supp. Mat. 3 that not only canwe observe differences in the
multivariate space between the European and Canadian metawebs, we can also observe differences in
the same space between random subgraphs from these networks. These results line up with the studies
spatializing metawebs that have been discussed in the introduction: changes in the species pool are
driving local structural changes in the networks.

2.6. Data cleanup, discovery, validation, and thresholding Once the probabilistic metaweb for
Canada has been produced, we followed a number of data inflation steps to finalize it. This step is
external to the actual transfer learning framework but rather serves as a way to augment and validate
the predicted metaweb.

First, we extracted the network corresponding to the 17 species shared between the European andCana-
dian pools and replaced these interactions with a probability of 0 (non-interaction) or 1 (interaction),
according to their value in the European metaweb. This represents a minute modification of the in-
ferred network (about 0.8% of all species pairs from the Canadian web), but ensures that we are directly
re-using knowledge from Europe.

Second, we looked for all species in the Canadian pool known to the Global Biotic Interactions (GloBI)
database (Poelen et al., 2014), and extracted their known interactions. Because GloBI aggregates ob-
served interactions, it is not a networks data source, and therefore the only information we can reliably
extract from it is that a species pair was reported to interact at least once. This last statement should yet
be taken with caution, as some sources in GloBI (e.g. Thessen & Parr, 2014) are produced through text
analysis, and therefore may not document direct evidence of the interaction. Nevertheless, should the
predictive model work, we would expect that a majority of interactions known to GloBI would also be
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Figure 4 Left: comparison of the probabil-
ities of interactions assigned by the model to
all interactions (grey curve), the subset of in-
teractions found in GloBI (red), and in the
Strong & Leroux (2014) Newfoundland dataset
(blue). The model recovers more interactions
with a low probability compared to data min-
ing, which can suggest that collected datasets
are biased towards more common or easy to
identify interactions. Right: distribution of
the in-degree and out-degree of the mammals
from Canada in the reconstructed metaweb,
where the rank is the maximal number of lin-
early independent columns (interactions) in
the metaweb. This figure describes a flat, rel-
atively short food web, in which there are few
predators but a large number of preys.

Figure 5 Left: effect of varying the cutoff for
probabilities to be considered non-zero on the
number of unique links and on �̂�, the prob-
abilistic estimate of the number of links as-
suming that all interactions are independent.
Right: effect of varying the cutoff on the num-
ber of disconnected species, and on network
connectance. In both panels, the grey line in-
dicates the cutoff 𝑃(𝑖 → 𝑗) ≈ 0.08 that resulted
in the first species losing all of its interactions.

predicted. We retrieved 366 interactions betweenmammals from theCanadian species pool fromGloBI,
33 of which were not predicted by the model; this results in a success rate of 91%. After performing this
check, we set the probability of all interactions known to GloBI to 1.

Finally, we downloaded the data from Strong & Leroux (2014), who mined various literature sources
to identify trophic interactions in Newfoundland. This dataset documented 25 interactions between
mammals, only two of which were not part of our (Canada-level) predictions, resulting in a success rate
of 92%. These two interactions were added to our predicted metaweb with a probability of 1. A com-
parison of interaction densities for the inferred metaweb, and the Globi and Newfoundland is shown in
fig. 4 and a table listing all interactions in the predicted Canadian metaweb can be found in the supple-
mentary material.

Because the confidence intervals on the inferred trait space are probably over-estimates, we decided to
apply a thresholding step to the interactions after data inflation (see fig. 5 showing the effect of varying
the cutoff on 𝑃(𝑖 → 𝑗)). Cirtwill & Hambäck (2021) proposed a number of strategies to threshold prob-
abilistic networks. Their methodology assumes the underlying data to be tag-based sequencing, which
represents interactions as co-occurrences of predator and prey within the same tags; this is conceptu-
ally identical to our Bernoulli-trial based reconstruction of a probabilistic network. We performed a full
analysis of the effect of various cutoffs, and as they either resulted in removing too few interactions,
or removing enough interactions that species started to be disconnected from the network, we set this
threshold for a probability equivalent to 0 to the largest possible value that still allowed all species to
have at least one interaction with a non-zero probability. The need for this slight deviation from the
Cirtwill & Hambäck (2021) methodology highlights the need for additional development on network
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Figure 6 Top: biological significance of the
first dimension. Left: there is a linear rela-
tionship between the values on the first di-
mension of the left subspace and the gener-
ality, i.e. the relative number of preys, sensu
Schoener (1989). Species with a value of 0 in
this subspace are at the bottom-most trophic
level. Right: there is, similarly, a linear rela-
tionship between the position of a species on
the first dimension of the right subspace and
its vulnerability, i.e. the relative number of
predators. Taken together, these two figures
show that the first-order representation of this
network would capture its degree distribution.
Bottom: topological consequences of the first
dimension. Left: differences in the 𝑧-scores of
the actual configuration model for the recon-
structed network and the prediction based only
on the first dimension (with a deeper satura-
tion indicating a bigger difference in scores).
Right: distribution of the differences in the left
panel.

thresholding.

3

Results and discussion

Using a transfer learning framework we were able to construct a probabilistic metaweb and (as per
Dunne, 2006) is a list of potential interactions, meaning that they will not necessarily be realized wher-
ever the two species co-occur. The t-SVD embedding is able to learn relevant ecological features for the
network. fig. 6 shows that the first rank correlates linearly with generality and vulnerability (Schoener,
1989), i.e. the number of preys and predators for each species. Importantly, this implies that a rank 1
approximation represents the configuration model for the metaweb, i.e. a set of random networks gen-
erated from a given degree sequence (Park & Newman, 2004). Accounting for the probabilistic nature
of the degrees, the rank 1 approximation also represents the soft configuration model (van der Hoorn et
al., 2018). Both models are maximum entropy graph models (Garlaschelli et al., 2018), with sharp (all
network realizations satisfy the specified degree sequence) and soft (network realizations satisfy the de-
gree sequence on average) local constraints, respectively. The (soft) configuration model is an unbiased
random graph model widely used by ecologists in the context of null hypothesis significance testing of
network structure (e.g. Bascompte et al., 2003) and can provide informative priors for Bayesian infer-
ence of network structure (e.g. J.-G. Young et al., 2021). It is noteworthy that for this metaweb, the
relevant information was extracted at the first rank. Because the first rank corresponds to the leading
singular value of the system, the results of fig. 6 have a straightforward interpretation: degree-based
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processes are the most important in structuring the mammalian food web.

One important aspect in which Europe and Canada differ (despite their comparable bioclimatic condi-
tions) is the degree of the legacy of human impacts, which have been much longer in Europe. Nenzén
et al. (2014) showed that even at small scales (the Iberian peninsula), mammal food webs retain the
signal of both past climate change and human activity, even when this human activity was orders of
magnitude less important than it is now. Similarly, Yeakel et al. (2014) showed that changes in human
occupation over several centuries can lead to food web collapse. Megafauna in particular seems to be
very sensitive to human arrival (Pires et al., 2015). In short, there is well-substantiated support for the
idea that human footprint affects more than the risk of species extinction (Marco et al., 2018), and can
lead to changes in interaction structure.

Cirtwill et al. (2019) showed that network inference techniques based on Bayesian approaches would
perform far better in the presence of an interaction-level informative prior; the desirable properties of
such a prior would be that it is expressed as a probability, preferably representing a Bernoulli event,
the value of which would be representative of relevant biological processes (probability of predation in
this case). We argue that the probability returned at the very last step of our framework may serve as
this informative prior; indeed, the output of our analysis can be used in subsequent steps, also possibly
involving expert elicitation to validate some of the most strongly recommended interactions. One im-
portant caveat to keep in mind when working with interaction inference is that interactions can never
really be true negatives (in the current state of our methodological framework and data collection lim-
itations); this renders the task of validating a model through the usual application of binary classifica-
tion statistics very difficult (although see Strydom, Catchen, et al., 2021 for a discussion of alternative
suggestions). The other way through which our framework can be improved is by substituting the pre-
dictors that are used for transfer. For example, in the presence of information on species traits that are
known to be predictive of species interactions, one might want to rely on functional rather than phylo-
genetic distances – in food webs, body size (and allometrically related variables) has been established as
such a variable (Brose et al., 2006); the identification of relevant functional traits is facilitated by recent
methodological developments (Rosado et al., 2013).

Finally, it should be noted that the framework we have presented is amenable to changes lending to
applicability to a broad range of potential scenarios. For example in this case study we have embedded
the original metaweb using t-SVD, because it lends itself to an RDPG reconstruction, which is known to
capture the consequences of evolutionary processes (Dalla Riva & Stouffer, 2016); this being said, there
are other ways to embed graphs (Arsov &Mirceva, 2019; Cai et al., 2017; Cao et al., 2019), which can be
used as alternatives. Regarding the transfer step it is possible to use distinct trees if workingwith distinct
clades (such as pollination networks) or an alternative measure of similarity (transfer medium) such
as information on foraging (Beckerman et al., 2006), cell-level mechanisms (Boeckaerts et al., 2021), or
a combination of traits and phylogenetic structure (Stock, 2021). Most importantly, although we focus
on a trophic system, it is an established fact that different (non-trophic) interactions do themselves
interact with and influence the outcome of trophic interactions (see e.g. Kawatsu et al., 2021; Kéfi et al.,
2012). Future development of metaweb inference techniques should cover the prediction of multiple
interaction types.
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