
NCBITaxonomy.jl - rapid biological names finding and reconciliation

Timothée Poisot 1,2 Rory Gibb 3,4,5 Sadie J. Ryan 6,7,8 Colin J. Carlson 10,9

1 Université de Montréal, Départment de Sciences Biologiques, Montréal QC, Canada 10 Center for Global

Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington,

D.C., United States of America 2 Québec Centre for Biodiversity Science, Montréal, QC, Canada 3 Centre

on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK

4 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine,

London, UK 5 Current address: Centre for Biodiversity and Environment Research, University College

London, London, UK 6 Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of

America 7 School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa 8 Department of

Geography, University of Florida, Gainesville, FL, United States of America 9 Department of Microbiology

and Immunology, Georgetown University Medical Center, Georgetown University, Washington, D.C., United

States of America

Correspondance to:

Timothée Poisot — timothee.poisot@umontreal.ca

NCBITaxonomy.jl is a package designed to facilitate the reconciliation and cleaning of taxonomic names, using

a local copy of the NCBI taxonomic backbone (Federhen 2012, Schoch et al. 2020); The basic search functions

are coupled with quality-of-life functions including case-insensitive search and custom fuzzy string matching to

facilitate the amount of information that can be extracted automatically while allowing efficient manual curation

and inspection of results. NCBITaxonomy.jl works with version 1.6 of the Julia programming language

(Bezanson et al. 2017), and relies on the Apache Arrow format to store a local copy of the NCBI raw taxonomy

files. The design of NCBITaxonomy.jl has been inspired by similar efforts, like the R package taxadb (Norman

et al. 2020), which provides an offline alternative to packages like taxize (Chamberlain and Szöcs 2013).

This work is released by its authors under a CC-BY 4.0 license cb

Last revision: March 2, 2023

https://orcid.org/0000-0002-0735-5184
https://orcid.org/0000-0002-0965-1649
https://orcid.org/0000-0002-4308-6321
https://orcid.org/0000-0001-6960-8434

Unambiguously identifying species is a far more challenging task than it may appear. There are a vast number1

of reasons for this. Different databases keep different taxonomic “backbones”, i.e. different data structures in2

which names are mapped to species, and organised in a hierarchy. Not all names are unique identifiers to3

groups. For example, Io can either refer to a genus of plants from the aster family, or to a genus of molluscs; the4

genus Mus (of which the house mouse Mus musculus is a species), contains a sub-genus also named Mus5

(within which Mus musculus is located). Conversely, the same species can have several names, which are valid6

synonyms: for example, the domestic cow Bos taurus admits Bos primigenius taurus as a valid synonym. In7

addition to binomial names, the same species can be known by many vernacular (common) names, which are8

language or even region-specific: Ovis aries, for example, has valid English vernaculars including lamb, sheep,9

wild sheep, and domestic sheep.10

In addition, taxonomic nomenclature changes regularly, with groups being split, merged, or moved to a new11

position in the tree of life; often, taxonomic revisions lead to these events occuring simultaneously. This is,12

notably, a common occurrence with viral taxonomy, each subsequent version of which can differ markedly from13

the last; compare, e.g Lefkowitz et al. (2018) to Walker et al. (2020), where entire viral sub-trees were split,14

re-organized, and created within just two years. As a consequence any mapping of names to other biological15

entities can become outdated, and therefore invalid. These taxonomic changes have profound implications for16

the way we perceive biodiversity at global scales (Dikow et al. 2009), to the point were taxonomic revisions17

should sometimes be actively conducted to improve e.g. conservation outcomes (Melville et al. 2021).18

None of these issues, were they to happen in isolation, would be very difficult to deal with. Indeed, performing19

the lookup for any text string in any database is a trivial operation. But to add to the complexity, one must also20

consider that most taxa names are at some point manually typed, which has the potential to introduce additional21

sources of variation in raw data; it is likely to expect that such mistakes may arise when attempting to write22

down the (perfectly valid) names of the bacterial isolate known as Myxococcus23

llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis, or of the crowned slaty flycatcher24

Griseotyrannus aurantioatrocristatus. These mistakes are more likely when dealing with hyper-diverse samples25

(demanding to memorize more names), like plant census (Dauncey et al. 2016, Wagner 2016, Conti et al.26

2021); when dealing with multiple investigators with different knowledge of the taxonomy; and as a result of the27

estimated error in any data entry exercice, which other fields estimate at up to about 5% (Barchard and Pace28

2011). As a result, the first question one needs to ask when confronted with a string of character that29

purportedly points to a node in the tree of life is not “to which entry in the taxonomy database is it associated?”,30

but “is there a mistake in this name that is likely to render a simple lookup invalid?”.31

All these considerations become important when matching species names both within and across datasets. Let32

us consider the hypothetical species survey of riverine fishes: European chub, Cyprinus cephalus, Leuciscus33

cephalus, Squalius cephalus. All are the same species (S. cephalus), referred to as one of the vernacular34

(European chub) and two formerly accepted names now classified as synonyms (but still present in the35

litterature). A simple estimate of diversity based on the user-supplied names would give 𝑛 = 4 species, when36

there is in fact only one. Some cases can be more difficult to catch; for example, the species Isoetes minima is37

frequently mentionned as Isœtes minima, because text processing use the “œ” grapheme to mark the “oe”38

diphthong. When the size of biodiversity datasets increases, and notably when the taxonomic scope of these39

datasets explodes, including organisms for which “names” are a fuzzier concept (for example, Influenza A virus40

(A/Sydney/05/97-like(H3N2)) is a valid name for a common influenza strain, although one that lacks a41

taxonomic rank), the feasibility of manual curation decreases.42

In this manuscript, we describe NCBITaxonomy.jl, a Julia package that provides advanced name matching and43

error handling capacities for the reconciliation of taxonomic names to the NCBI database. This package was44

used to facilitate the development of the CLOVER (Gibb et al. 2021) database of host-virus associations, by45

reconciling the names of viruses and mammals from four different sources, where all of the issues described46

above were present. More recently, it has become part of the automated curation of data for the VIRION47

(Carlson et al. 2022) database, which automatically curates an up-to-date, authoritative virome network from48

dozens of heterogeneous sources. We describe the core capacities of this package, and highlight how it enables49

safe, high-performance name reconciliation.50

Design principles and comparison to other tools51

Based on the author’s experience reconciling lists of thousands of biological names, NCBITaxonomy.jl is built52

around a series of features that allow (i) maximum flexibility when handling names without a direct match, (ii) a53

bespoke exception system to handle failures to match automatically, and (ii) limits to the pool of potential names54

in order to achieve orders-of-magnitude speedups when the broad classification of the name to match is known.55

Adhering to these design principles led to a number of choices. A comparison of the features of different56

packages, as infered from their public documentation, is presented in tbl. ??.57

First, we specifically target programmatic (as opposed to command-line) based approaches, so that the58

3 of 10

functionalities of the package can be accessed as part of a larger pipeline. Second, to speed up the queries, we59

work from a local version of the database, the installation of which is handled at build time by the package60

itself; each project using the package can use its own version of the taxonomy by specifying a folder where it is61

stored through an environmental variable. Third, because we cannot trust that the names as presented in the62

original data are correct, we offer case-insensitive search (at no time cost) and fuzzy-matching (at a significant63

time cost). Either of these strategies can be called only after a case-sensitive, non-fuzzy search yields an64

exception about the lack of a direct match. Finally, in order to achieve a good performance even when relying on65

fuzzy matching, we offer the ability to limit the search to specific parts of the taxonomy database. An example66

of the impact of this feature on the performance of the package is presented below.67

Table 1: Comparison of core features of packages offering access to the NCBI taxonomic backbone. “Library”:
ability to be called from code. “CLI”: ability to work as a command-line tool. “Local DB”: ability to store a
copy of the database locally. “Fuzzy”: ability to perform fuzzy matching on inputs. “Case”: ability to perform
case-insensitive search. “Subsets”: ability to limit the search to a subset of the raw database. “Ranks”: ability
to limit the search to specific raxonomi ranks. The features of the various packages have been determined from
reading their documentation. {tbl. ??}

Tool Lang. Library CLI

Local

DB Fuzzy Case Subsets Ranks Reference

NCBITaxonomy.jl Julia + + + + + +

taxadb R + + + +

taxopy Python + + +

rentrez R + +

Taxonkit Python + +

NCBI-taxonomist Python + +

Overview of functionalities68

An up-to-date version of the documentation for NCBITaxonomy.jl can be found in the package’s GitHub69

repository (PoisotLab/NCBITaxonomy.jl), including examples and in-line documentation of every method. The70

package is released under the MIT license. Contributions can be made in the form of issues (bug reports,71

questions, features suggestions) and pull requests, all of which can be consulted publicly. Alternatively, the72

package can be downloaded from its Zenodo page (ID 5825828), along with a versioned DOI.73

4 of 10

https://github.com/PoisotLab/NCBITaxonomy.jl
https://zenodo.org/record/

Local file storage74

In order to achieve good performance, the package will first retrieve the latest (as validated by its checksum)75

NCBI taxonomy backbone, store it locally, and pre-process it as a set of Julia data tables. By default, the76

taxonomy will be downloaded to the user’s home directory, which is not an ideal solution, and therefore we77

recommend that users set an environment variable to specificy where the data will be loaded from (this path will78

be created if it doesn’t exist):79

ENV["NCBITAXONOMY_PATH"] = joinpath(homedir(), "data", "NCBITaxonomy.jl")

Note that this location can be different for different projects, as the package is able to update the taxonomic80

backbone (and will indeed prompt the user to do so if the taxonomy is more than 90 days old, as infered from81

looking at the raw files creation timestamp). The package can then be checked out and installed anonymously82

from the central Julia repository:83

using Pkg

Pkg.add("NCBITaxonomy")

As long as the package is not re-built, the local set of tables downloaded from NCBI will not change; this way,84

users can re-run an analysis with a guarantee that the underlying taxonomic backbone has not changed, which is85

not the case when relying on API queries. In order to update the taxonomic backbone, users can call the build86

function of Julia’s package manager (]build NCBITaxonomy), which will download the most recent version of87

all files.88

This software note describes version v0.3.0 of the package (we follow semantic versioning), which works on89

Julia 1.5 upwards. The dependencies are all resolved by the package manager at installation, and (on the90

user-facing side) include the StringDistances.jl package, allowing users to experiment with different string91

matching methods. As is best practices for Julia packages, a Project.toml file specifying compatible92

dependencies versions is distributed with the package. The code is covered by unit-tests (with about 98%93

coverage), as well as integration tests as part of the documentation (specifically, a use-case detailing how to94

clean data from a biodiversity survey, and a use-case aiming to reconstruct a taxonomic tree for the95

Lemuriformes).96

5 of 10

Improved name matching97

Name finding, i.e. the matching of an arbitrary string to a taxonomic identifier, is primarily done through the98

taxon function, which admits either a unique NCBI identifier (e.g. taxon(36219) for the bogue Boops boops),99

a string (taxon("Boops boops")), or a data frame with a restricted list of names in order to create a name finder100

function (see the next section). The taxon method has additional arguments to perform fuzzy matching in order101

to catch possible typos (taxon("Boops bops"; strict=false)), to perform a lowercase search (useful when102

alphanumeric codes are part of the taxon name, like for some viruses), and to restrict the the search to a specific103

taxonomic rank. The taxon function also accepts a preferscientificname keyword, to prevent matching104

vernacular names; the use of this keyword ought to be informed by knowledge about how the data were entered.105

The lowercase search can be a preferable alternative to fuzzy string matching. Consider the string106

Adeno-associated virus 3b - it has three names with equal distance (under the Levensthein string distance107

function):108

julia> similarnames("Adeno-associated virus 3b"; threshold=0.95)

3-element Vector{Pair{NCBITaxon, Float64}}:

Adeno-associated virus - 3 (ncbi:46350) => 0.96

Adeno-associated virus 3B (ncbi:68742) => 0.96

Adeno-associated virus 3A (ncbi:1406223) => 0.96

Depending on the operating system (and specifically whether it is case-sensitive), either of these three names109

can be returned; compare to the output of a case insensitive name search:110

julia> taxon("Adeno-associated virus 3b"; casesensitive=false)

Adeno-associated virus 3B (ncbi:68742)

This returns the correct name.111

Name matching output and error handling112

When it succeeds, taxon will return a NCBITaxon object (made of a name string field, and an id numerical113

field). That being said, the package is designed under the assumption that ambiguities should yield an error for114

6 of 10

the user to handle. There are two such errors: NameHasNoDirectMatch (with instructions about how to possible115

solve it, using the similarnames function), or a NameHasMultipleMatches (listing the possible valid matches,116

and suggesting to use alternativetaxa to find the correct one). Therefore, the common way to work with the117

taxon function would be to wrap it in a try/catch statement:118

try

taxon(name)

Additional operations with the matched name

catch err

if isa(err, NameHasNoDirectMatch)

What to do if no match is found

elseif isa(err, NameHasMultipleMatches)

What to do if there are multiple matches

else

What to do in case of another error that is not NCBITaxonomy specific

end

end

These functions will not demand any user input in the form of key presses (though they can be wrapped in119

additional code to allow it), as they are intended to run on clusters or virtual machines without supervision. The120

taxon function has good scaling using muliple threads. For convenience in rapidly getting a taxon for121

demonstration purposes, we also provide a string macro, whereby e.g. ncbi"Procyon lotor" will return the122

taxon object for the raccoon.123

Name filtering functions124

As the full NCBI names table has over 3 million entries at the time of writing, we have provided a number of125

functions to restrict the scope of names that are searched. These are driven by the NCBI divisions. For example126

nf = mammalfilter(true) will return a data frame containing the names of mammals, inclusive of rodents127

and primates, and can be used with e.g. taxon(nf, "Pan"). This has the dual advantage of making search128

faster, but also of avoiding matching on names that are shared by another taxonomic group (which is not an129

7 of 10

issue with Pan, but is an issue with e.g. Io as mentioned in the introduction, or with the common name Lizard,130

which fuzzy-matches on the hemipteran genus Lisarda rather than the class Lepidosauria).131

Note that the use of a restricted list of names can have significant performance consequences: compare, for132

example, the time taken to return the taxon Pan in the entire database, in all mammals, and in all primates:133

Names list Fuzzy matching Time (ms) Allocations Memory allocated

all no 23 34 2 KiB

yes 105 2580 25 MiB

mammalfilter(true) no 0.55 32 2 KiB

yes 1.9 551 286 KiB

primatefilter() no 0.15 33 2 KiB

yes 0.3 92 27 KiB

Clearly, the optimal search strategy is to (i) rely on name filters to ensure that search are conducted within the134

appropriate NCBI division, and (ii) only rely on fuzzy matching when the strict or lowercase match fails to135

return a name, as fuzzy matching can result in order of magnitude more run time and memory footprint. These136

numbers were obtained on a single Intel i7-8665U CPU (@ (1.90GHz). Using "chimpanzees" as the search137

string (one of the NCBI recognized vernaculars for Pan) gave qualitatively similar results, suggesting that there138

is no performance cost associated with working with synonyms or verncular input data.139

Quality of life functions140

In order to facilitate working with names, we provide the authority function (gives the full taxonomic141

authority for a name), synonyms (to get alternative valid names), vernacular (for English common names), and142

rank (for the taxonomic rank). These functions are not used in name matching, but are often useful in the143

post-processing of results.144

Taxonomic lineages navigation145

The children function will return all nodes that are directly descended from a taxon; the descendants function146

will recursively apply this function to all descendants of these nodes, until only terminal leaves are reached. The147

8 of 10

parent function is an “upwards” equivalent, giving the taxon from which a taxon descends; the lineage148

function chains calls to parent until either taxon(1) (the taxonomy root) or an arbitrary ancestor is reached.149

The taxonomicdistance function (and its in-place equivalent, taxonomicdistance!, which uses150

memory-efficient re-allocation if the user needs to change the distance between taxonomic ranks) uses the151

Shimatani (2001) approach to reconstruct a matrix of distances based on taxonomy, which can serve as a rough152

proxy when no phylogenies are available. This allows coarse estimations of taxonomic diversity based on153

species lists. The default distance between taxonomic levels is as in Shimatani (2001) (i.e. species have a154

distance of 0, genus of 1, family of 2, sub-classes of 3, and everything else 4), but specific scores can be passed155

for any taxonomic level know to the NCBI name table.156

Conclusion157

NCBITaxonomy.jl enables rapid, taxonomically-restricted, adaptive matching for taxonomic names. By158

implementing various combinations of search strategies, it allows users to (i) optimize the speed of their queries159

and (ii) avoid usual caveats of simple string matching. Through explicit exceptions, it allows to write code that160

will handle the possible edge cases that cannot be solved automatically in a way that does not interrupt161

execution, or requires manual input by the user. Given the breadth of the NCBI taxonomy database,162

NCBITaxonomy.jl is particularly suited to the name cleaning of large datasets of names.163

Acknowledgements: This work was supported by funding to the Viral Emergence Research Initiative164

(VERENA) consortium including NSF BII 2021909 and 2213854 and a grant from Institut de Valorisation des165

Données (IVADO), by the NSERC Discovery Grants and Discovery Acceleration Supplement programs, and by166

a donation from the Courtois Foundation. Benchmarking of this package on distributed systems was enabled by167

support provided by Calcul Québec (www.calculquebec.ca) and Compute Canada (www.computecanada.ca).168

TP wrote the initial code, TP and CJC contributed to API design, and all authors contributed to functionalities169

and usability testing.170

References171

Barchard, K. and Pace, L. 2011. Preventing human error: The impact of data entry methods on data accuracy172

and statistical results. - Computers in Human Behavior 27: 1834–1839.173

9 of 10

https://doi.org/10.1016/j.chb.2011.04.004
https://doi.org/10.1016/j.chb.2011.04.004
https://doi.org/10.1016/j.chb.2011.04.004

Bezanson, J. et al. 2017. Julia: A Fresh Approach to Numerical Computing. - SIAM Review 59: 65–98.174

Carlson, C. J. et al. 2022. The Global Virome in One Network (VIRION): An Atlas of Vertebrate-Virus175

Associations. - mBio in press.176

Chamberlain, S. A. and Szöcs, E. 2013. Taxize: Taxonomic search and retrieval in R. - F1000Research 2: 191.177

Conti, M. et al. 2021. Match Algorithms for Scientific Names in FlorItaly, the Portal to the Flora of Italy. -178

Plants 10: 974.179

Dauncey, E. A. et al. 2016. Common mistakes when using plant names and how to avoid them. - European180

Journal of Integrative Medicine 8: 597–601.181

Dikow, T. et al. 2009. Biodiversity Research Based on Taxonomic Revisions - A Tale of Unrealized182

Opportunities. - In: Diptera Diversity: Status, Challenges and Tools. Brill, pp. 323–346.183

Federhen, S. 2012. The NCBI taxonomy database. - Nucleic acids research 40: D136–D143.184

Gibb, R. et al. 2021. Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. - BioScience in press.185

Lefkowitz, E. J. et al. 2018. Virus taxonomy: The database of the International Committee on Taxonomy of186

Viruses (ICTV). - Nucleic Acids Research 46: D708–D717.187

Melville, J. et al. 2021. A return-on-investment approach for prioritization of rigorous taxonomic research188

needed to inform responses to the biodiversity crisis. - PLOS Biology 19: e3001210.189

Norman, K. E. A. et al. 2020. Taxadb: A high-performance local taxonomic database interface. - Methods in190

Ecology and Evolution 11: 1153–1159.191

Schoch, C. L. et al. 2020. NCBI Taxonomy: A comprehensive update on curation, resources and tools. -192

Database in press.193

Shimatani, K. 2001. On the Measurement of Species Diversity Incorporating Species Differences. - Oikos 93:194

135–147.195

Wagner, V. 2016. A review of software tools for spell-checking taxon names in vegetation databases. - Journal196

of Vegetation Science 27: 1323–1327.197

Walker, P. J. et al. 2020. Changes to virus taxonomy and the Statutes ratified by the International Committee on198

Taxonomy of Viruses (2020). - Archives of Virology 165: 2737–2748.199

10 of 10

https://doi.org/10.1137/141000671
https://doi.org/10.1128/mbio.02985-21
https://doi.org/10.1128/mbio.02985-21
https://doi.org/10.1128/mbio.02985-21
https://doi.org/10.12688/f1000research.2-191.v2
https://doi.org/10.1093/biosci/biab080
https://doi.org/10.1093/nar/gkx932
https://doi.org/10.1093/nar/gkx932
https://doi.org/10.1093/nar/gkx932
https://doi.org/10.1371/journal.pbio.3001210
https://doi.org/10.1371/journal.pbio.3001210
https://doi.org/10.1371/journal.pbio.3001210
https://doi.org/10.1111/2041-210X.13440
https://www.jstor.org/stable/3547217
https://doi.org/10.1007/s00705-020-04752-x
https://doi.org/10.1007/s00705-020-04752-x
https://doi.org/10.1007/s00705-020-04752-x

	Design principles and comparison to other tools
	Overview of functionalities
	Local file storage
	Improved name matching
	Name matching output and error handling
	Name filtering functions
	Quality of life functions
	Taxonomic lineages navigation

	Conclusion
	References

