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NCBITaxonomy.jl is a package designed to facilitate the reconciliation and cleaning of taxonomic names,
using a local copy of the NCBI taxonomic backbone (Federhen 2012, Schoch et al. 2020); The basic search
functions are coupled with quality-of-life functions including case-insensitive search and custom fuzzy string
matching to facilitate the amount of information that can be extracted automatically while allowing efficient
manual curation and inspection of results. NCBITaxonomy.jl works with version 1.6 of the Julia program-
ming language (Bezanson et al. 2017), and relies on the Apache Arrow format to store a local copy of the
NCBI raw taxonomy files. The design of NCBITaxonomy.jl has been inspired by similar efforts, like the R
package taxadb (Norman et al. 2020), which provides an offline alternative to packages like taxize (Cham-
berlain and Szöcs 2013).

Unambiguously identifying species is a far more challenging task than it may appear. There are a vast number
of reasons for this. Different databases keep different taxonomic “backbones”, i.e. different data structures
in which names are mapped to species, and organised in a hierarchy. Not all names are unique identifiers to
groups. For example, Io can either refer to a genus of plants from the aster family, or to a genus of molluscs;
the genus Mus (of which the house mouse Mus musculus is a species), contains a sub-genus also named
Mus (within which Mus musculus is located). Conversely, the same species can have several names, which
are valid synonyms: for example, the domestic cow Bos taurus admits Bos primigenius taurus as a valid
synonym. In addition to binomial names, the same species can be known by many vernacular (common)
names, which are language or even region-specific: Ovis aries, for example, has valid English vernaculars
including lamb, sheep, wild sheep, and domestic sheep.

In addition, taxonomic nomenclature changes regularly, with groups being split, merged, or moved to a new
position in the tree of life; often, taxonomic revisions lead to these events occuring simultaneously. This is,
notably, a common occurrence with viral taxonomy, each subsequent version of which can differ markedly
from the last; compare, e.g Lefkowitz et al. (2018) to Walker et al. (2020), where entire viral sub-trees
were split, re-organized, and created within just two years. As a consequence any mapping of names to other
biological entities can become outdated, and therefore invalid. These taxonomic changes have profound
implications for the way we perceive biodiversity at global scales (Dikow et al. 2009), to the point were tax-
onomic revisions should sometimes be actively conducted to improve e.g. conservation outcomes (Melville
et al. 2021).
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None of these issues, were they to happen in isolation, would be very difficult to deal with. Indeed, perform-
ing the lookup for any text string in any database is a trivial operation. But to add to the complexity, one must
also consider that most taxa names are at some point manually typed, which has the potential to introduce
additional sources of variation in raw data; it is likely to expect that such mistakes may arise when attempt-
ing to write down the (perfectly valid) names of the bacterial isolate known as Myxococcus llanfairpwll-
gwyngyllgogerychwyrndrobwllllantysiliogogogochensis, or of the crowned slaty flycatcher Griseotyrannus
aurantioatrocristatus. These mistakes are more likely when dealing with hyper-diverse samples (demanding
to memorize more names), like plant census (Dauncey et al. 2016, Wagner 2016, Conti et al. 2021); when
dealing with multiple investigators with different knowledge of the taxonomy; and as a result of the estimated
error in any data entry exercice, which other fields estimate at up to about 5% (Barchard and Pace 2011). As
a result, the first question one needs to ask when confronted with a string of character that purportedly points
to a node in the tree of life is not “to which entry in the taxonomy database is it associated?”, but “is there a
mistake in this name that is likely to render a simple lookup invalid?”.

All these considerations become important when matching species names both within and across datasets.
Let us consider the hypothetical species survey of riverine fishes: European chub, Cyprinus cephalus, Leucis-
cus cephalus, Squalius cephalus. All are the same species (S. cephalus), referred to as one of the vernacular
(European chub) and two formerly accepted names now classified as synonyms (but still present in the lit-
terature). A simple estimate of diversity based on the user-supplied names would give 𝑛 = 4 species, when
there is in fact only one. Some cases can be more difficult to catch; for example, the species Isoetes minima
is frequently mentionned as Isœtes minima, because text processing use the “œ” grapheme to mark the “oe”
diphthong. When the size of biodiversity datasets increases, and notably when the taxonomic scope of these
datasets explodes, including organisms for which “names” are a fuzzier concept (for example, Influenza A
virus (A/Sydney/05/97-like(H3N2)) is a valid name for a common influenza strain, although one that lacks a
taxonomic rank), the feasibility of manual curation decreases.

In this manuscript, we describe NCBITaxonomy.jl, a Julia package that provides advanced name matching
and error handling capacities for the reconciliation of taxonomic names to the NCBI database. This package
was used to facilitate the development of the CLOVER (Gibb et al. 2021) database of host-virus associa-
tions, by reconciling the names of viruses and mammals from four different sources, where all of the issues
described above were present. More recently, it has become part of the automated curation of data for the
VIRION (Carlson et al. 2022) database, which automatically curates an up-to-date, authoritative virome net-
work from dozens of heterogeneous sources. We describe the core capacities of this package, and highlight
how it enables safe, high-performance name reconciliation.

1

Design principles and comparison to other tools

Based on the author’s experience reconciling lists of thousands of biological names, NCBITaxonomy.jl is
built around a series of features that allow (i) maximum flexibility when handling names without a direct
match, (ii) a bespoke exception system to handle failures to match automatically, and (ii) limits to the pool of
potential names in order to achieve orders-of-magnitude speedups when the broad classification of the name
to match is known. Adhering to these design principles led to a number of choices. A comparison of the
features of different packages, as infered from their public documentation, is presented in tbl. ??.

First, we specifically target programmatic (as opposed to command-line) based approaches, so that the func-
tionalities of the package can be accessed as part of a larger pipeline. Second, to speed up the queries, we
work from a local version of the database, the installation of which is handled at build time by the package
itself; each project using the package can use its own version of the taxonomy by specifying a folder where
it is stored through an environmental variable. Third, because we cannot trust that the names as presented
in the original data are correct, we offer case-insensitive search (at no time cost) and fuzzy-matching (at a
significant time cost). Either of these strategies can be called only after a case-sensitive, non-fuzzy search
yields an exception about the lack of a direct match. Finally, in order to achieve a good performance even
when relying on fuzzy matching, we offer the ability to limit the search to specific parts of the taxonomy
database. An example of the impact of this feature on the performance of the package is presented below.
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Table 1 Comparison of core features of packages offering access to the NCBI taxonomic backbone. “Library”: ability
to be called from code. “CLI”: ability to work as a command-line tool. “Local DB”: ability to store a copy of the
database locally. “Fuzzy”: ability to perform fuzzy matching on inputs. “Case”: ability to perform case-insensitive
search. “Subsets”: ability to limit the search to a subset of the raw database. “Ranks”: ability to limit the search to
specific raxonomi ranks. The features of the various packages have been determined from reading their documentation.
{tbl. ??}

Tool Lang. Library CLI
Local
DB Fuzzy Case Subsets Ranks Reference

NCBITaxonomy.jl Julia + + + + + +
taxadb R + + + +
taxopy Python + + +
rentrez R + +
Taxonkit Python + +
NCBI-
taxonomist

Python + +

2

Overview of functionalities

An up-to-date version of the documentation for NCBITaxonomy.jl can be found in the package’s GitHub
repository (PoisotLab/NCBITaxonomy.jl), including examples and in-line documentation of every method.
The package is released under the MIT license. Contributions can be made in the form of issues (bug reports,
questions, features suggestions) and pull requests, all of which can be consulted publicly. Alternatively, the
package can be downloaded from its Zenodo page (ID 5825828), along with a versioned DOI.

2.1. Local file storage In order to achieve good performance, the package will first retrieve the latest (as
validated by its checksum) NCBI taxonomy backbone, store it locally, and pre-process it as a set of Julia
data tables. By default, the taxonomy will be downloaded to the user’s home directory, which is not an ideal
solution, and therefore we recommend that users set an environment variable to specificy where the data will
be loaded from (this path will be created if it doesn’t exist):

ENV["NCBITAXONOMY_PATH"] = joinpath(homedir(), "data", "NCBITaxonomy.jl")

Note that this location can be different for different projects, as the package is able to update the taxonomic
backbone (and will indeed prompt the user to do so if the taxonomy is more than 90 days old, as infered from
looking at the raw files creation timestamp). The package can then be checked out and installed anonymously
from the central Julia repository:

using Pkg
Pkg.add("NCBITaxonomy")

As long as the package is not re-built, the local set of tables downloaded from NCBI will not change; this
way, users can re-run an analysis with a guarantee that the underlying taxonomic backbone has not changed,
which is not the case when relying on API queries. In order to update the taxonomic backbone, users can
call the build function of Julia’s package manager (]build NCBITaxonomy), which will download the most
recent version of all files.

This software note describes version v0.3.0 of the package (we follow semantic versioning), which works
on Julia 1.5 upwards. The dependencies are all resolved by the package manager at installation, and (on
the user-facing side) include the StringDistances.jl package, allowing users to experiment with different
string matching methods. As is best practices for Julia packages, a Project.toml file specifying compat-
ible dependencies versions is distributed with the package. The code is covered by unit-tests (with about
98% coverage), as well as integration tests as part of the documentation (specifically, a use-case detailing
how to clean data from a biodiversity survey, and a use-case aiming to reconstruct a taxonomic tree for the
Lemuriformes).
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2.2. Improved name matching Name finding, i.e. the matching of an arbitrary string to a taxonomic iden-
tifier, is primarily done through the taxon function, which admits either a unique NCBI identifier (e.g.
taxon(36219) for the bogue Boops boops), a string (taxon("Boops boops")), or a data frame with a re-
stricted list of names in order to create a name finder function (see the next section). The taxon method
has additional arguments to perform fuzzy matching in order to catch possible typos (taxon("Boops bops";
strict=false)), to perform a lowercase search (useful when alphanumeric codes are part of the taxon name,
like for some viruses), and to restrict the the search to a specific taxonomic rank. The taxon function also
accepts a preferscientificname keyword, to prevent matching vernacular names; the use of this keyword
ought to be informed by knowledge about how the data were entered.

The lowercase search can be a preferable alternative to fuzzy string matching. Consider the string Adeno-
associated virus 3b - it has three names with equal distance (under the Levensthein string distance func-
tion):

julia> similarnames("Adeno-associated virus 3b"; threshold=0.95)
3-element Vector{Pair{NCBITaxon, Float64}}:

Adeno-associated virus - 3 (ncbi:46350) => 0.96
Adeno-associated virus 3B (ncbi:68742) => 0.96

Adeno-associated virus 3A (ncbi:1406223) => 0.96

Depending on the operating system (and specifically whether it is case-sensitive), either of these three names
can be returned; compare to the output of a case insensitive name search:

julia> taxon("Adeno-associated virus 3b"; casesensitive=false)
Adeno-associated virus 3B (ncbi:68742)

This returns the correct name.

2.3. Name matching output and error handling When it succeeds, taxon will return a NCBITaxon object
(made of a name string field, and an id numerical field). That being said, the package is designed under
the assumption that ambiguities should yield an error for the user to handle. There are two such errors:
NameHasNoDirectMatch (with instructions about how to possible solve it, using the similarnames function),
or a NameHasMultipleMatches (listing the possible valid matches, and suggesting to use alternativetaxa
to find the correct one). Therefore, the common way to work with the taxon function would be to wrap it in
a try/catch statement:

try
taxon(name)
# Additional operations with the matched name

catch err
if isa(err, NameHasNoDirectMatch)

# What to do if no match is found
elseif isa(err, NameHasMultipleMatches)

# What to do if there are multiple matches
else

# What to do in case of another error that is not NCBITaxonomy specific
end

end

These functions will not demand any user input in the form of key presses (though they can be wrapped in
additional code to allow it), as they are intended to run on clusters or virtual machines without supervision.
The taxon function has good scaling using muliple threads. For convenience in rapidly getting a taxon for
demonstration purposes, we also provide a string macro, whereby e.g. ncbi"Procyon lotor" will return the
taxon object for the raccoon.

2.4. Name filtering functions As the full NCBI names table has over 3 million entries at the time of writing,
we have provided a number of functions to restrict the scope of names that are searched. These are driven
by the NCBI divisions. For example nf = mammalfilter(true) will return a data frame containing the
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names of mammals, inclusive of rodents and primates, and can be used with e.g. taxon(nf, "Pan"). This
has the dual advantage of making search faster, but also of avoiding matching on names that are shared by
another taxonomic group (which is not an issue with Pan, but is an issue with e.g. Io as mentioned in the
introduction, or with the common name Lizard, which fuzzy-matches on the hemipteran genus Lisarda rather
than the class Lepidosauria).

Note that the use of a restricted list of names can have significant performance consequences: compare, for
example, the time taken to return the taxon Pan in the entire database, in all mammals, and in all primates:

Names list Fuzzy matching Time (ms) Allocations Memory allocated

all no 23 34 2 KiB
yes 105 2580 25 MiB

mammalfilter(true) no 0.55 32 2 KiB
yes 1.9 551 286 KiB

primatefilter() no 0.15 33 2 KiB
yes 0.3 92 27 KiB

Clearly, the optimal search strategy is to (i) rely on name filters to ensure that search are conducted within
the appropriate NCBI division, and (ii) only rely on fuzzy matching when the strict or lowercase match fails
to return a name, as fuzzy matching can result in order of magnitude more run time and memory footprint.
These numbers were obtained on a single Intel i7-8665U CPU (@ (1.90GHz). Using "chimpanzees" as the
search string (one of the NCBI recognized vernaculars for Pan) gave qualitatively similar results, suggesting
that there is no performance cost associated with working with synonyms or verncular input data.

2.5. Quality of life functions In order to facilitate working with names, we provide the authority function
(gives the full taxonomic authority for a name), synonyms (to get alternative valid names), vernacular (for
English common names), and rank (for the taxonomic rank). These functions are not used in name matching,
but are often useful in the post-processing of results.

2.6. Taxonomic lineages navigation The children function will return all nodes that are directly descended
from a taxon; the descendants function will recursively apply this function to all descendants of these nodes,
until only terminal leaves are reached. The parent function is an “upwards” equivalent, giving the taxon from
which a taxon descends; the lineage function chains calls to parent until either taxon(1) (the taxonomy
root) or an arbitrary ancestor is reached.

The taxonomicdistance function (and its in-place equivalent, taxonomicdistance!, which uses memory-
efficient re-allocation if the user needs to change the distance between taxonomic ranks) uses the Shimatani
(2001) approach to reconstruct a matrix of distances based on taxonomy, which can serve as a rough proxy
when no phylogenies are available. This allows coarse estimations of taxonomic diversity based on species
lists. The default distance between taxonomic levels is as in Shimatani (2001) (i.e. species have a distance of
0, genus of 1, family of 2, sub-classes of 3, and everything else 4), but specific scores can be passed for any
taxonomic level know to the NCBI name table.

3

Conclusion

NCBITaxonomy.jl enables rapid, taxonomically-restricted, adaptive matching for taxonomic names. By im-
plementing various combinations of search strategies, it allows users to (i) optimize the speed of their queries
and (ii) avoid usual caveats of simple string matching. Through explicit exceptions, it allows to write code
that will handle the possible edge cases that cannot be solved automatically in a way that does not inter-
rupt execution, or requires manual input by the user. Given the breadth of the NCBI taxonomy database,
NCBITaxonomy.jl is particularly suited to the name cleaning of large datasets of names.
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