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Abstract: Networks of species interactions underpin numerous ecosystem processes, but com-
prehensively sampling these interactions is difficult. Interactions intrinsically vary across space
and time, and given the number of species that compose ecological communities, it can be tough
to distinguish between a true negative (where two species never interact) from a false negative
(where two species have not been observed interacting even though they actually do). Assess-
ing the likelihood of interactions between species is an imperative for several fields of ecology.
This means that to predict interactions between species—and to describe the structure, varia-
tion, and change of the ecological networks they form—we need to rely on modeling tools. Here
we provide a proof-of-concept, where we show how a simple neural-network model makes ac-
curate predictions about species interactions given limited data. We then assess the challenges
and opportunities associated with improving interaction predictions, and provide a conceptual
roadmap forward toward predictive models of ecological networks that is explicitly spatial and
temporal. We conclude with a brief primer on the relevant methods and tools needed to start
building these models, which we hope will guide this research program forward.



Introduction1

Ecosystems are, in large part, constructed by the interactions within them — organisms interact2

with one-another and with their environment, either directly or indirectly. Interactions between3

individuals, populations, and species create networks of interactions that drive ecological and4

evolutionary dynamics and maintain the coexistence, diversity, and functioning of ecosystems5

(Delmas et al. 2018; Landi et al. 2018; Albrecht et al. 2018). Species interaction networks6

underpin our understanding of numerous ecological processes (Pascual and Dunne 2006; Heleno7

et al. 2014). Yet, even basic knowledge of species interactions (like being able to list them, or8

guess which ones may exist) remains one of the most severe biodiversity shortfalls (Hortal et9

al. 2015), in large part due to the tedious, time-consuming, and expensive process of collecting10

species interaction data. Comprehensively sampling every possible interaction is not feasible11

given the sheer number of species on Earth, and the data we can collect about interactions tend to12

be biased and noisy (de Aguiar et al. 2019). This is then compounded as species interactions are13

typically measured as a binary variable (present or absent) even though it is evident interactions14

are not all-or-nothing. Empirically we know species interactions occur probabilistically due to15

variation in species abundances in space and time (Poisot, Stouffer, and Gravel 2015). Different16

types of interactions vary in their intrinsic predictability (e.g. some fungal species engage in17

opportunistic saprotrophy (Smith et al. 2017), obligate parasites are more deterministic in their18

interactions than facultative parasites (Poisot et al. 2013; Luong and Mathot 2019)). In addition19

to this variance in predictability, networks from different systems are structured by different20

mechanisms.21

Still, like all of Earth’s systems, species interaction networks have entered their “long now”22

(Carpenter 2002), where anthropogenic change will have long-term, low-predictability conse-23

quences (Burkle, Marlin, and Knight 2013) for our planet’s ecology. Therefore, our field needs24

a roadmap towards models that enable prediction (for the present) and forecasting (for the fu-25

ture) of species interactions and the networks they form, and which accounts for their spatial26

and temporal variation (McCann 2007; Seibold et al. 2018). As an example, in disease ecol-27

ogy, predicting potential hosts of novel disease (recently notably the search for wildlife hosts28

of betacoronaviruses; Becker et al. 2020; Wardeh, Baylis, and Blagrove 2021) has received29

3 of 58



much attention. Network approaches have been used for the prediction of risk and dynamics of30

dengue (Zhao et al. 2020), Chagas disease (Rengifo-Correa et al. 2017), Rickettsiosis (Morand31

et al. 2020), Leishmaniasis (Stephens 2009), and a myriad infectious diseases in livestock and32

wildlife (Craft 2015). Additionally, prediction of interaction networks is a growing imperative33

for next-generation biodiversity monitoring, requiring a conceptual framework and a flexible set34

of tools to predict interactions that is explicitly spatial and temporal in perspective (Edwards et35

al. 2021; Magioli and Ferraz 2021; Zhang and He 2021). Developing better models for predic-36

tion of these interactions will rely on integration of data from many sources, and the sources for37

this data may differ depending on the type of interaction we wish to predict (Gibb et al. 2021).38

Interactions between species can be conceptualised in a multitude of ways (mutualistic vs. antag-39

onistic, strong vs. weak, symmetric vs. asymmetric, direct vs. indirect) (Jordano 2016a; Morales-40

Castilla et al. 2015). What is common among definitions of species interactions is that at least41

one of the species is affected by the presence of another (Morales-Castilla et al. 2015). Net-42

works can be used to represent a variety of interaction types, including: unipartite networks:43

where each species can be linked to other species (often food webs), bipartite networks: where44

there are two pools of species and all interactions occur between species in each pool (typically45

used for pairwise interactions; e.g. hosts and parasites), and k-partite networks,: which expand46

to more than two discrete sets of interacting species (e.g., some parasitoid webs, seed dispersal47

networks, and pollination networks (Pocock, Evans, and Memmott 2012)).48

Methods for predicting interactions between species exist, but at the moment are difficult to49

generalise as they are typically based around a single mechanism at a single scale: position in50

the trophic niche (Gravel et al. 2013; Petchey et al. 2008), phylogenetic distance (Pomeranz51

et al. 2018; Elmasri et al. 2020), functional trait matching (Bartomeus et al. 2016), interac-52

tion frequency (Weinstein and Graham 2017; Vázquez, Morris, and Jordano 2005), or other53

network properties (Terry and Lewis 2020; Stock et al. 2017). Species interaction networks,54

as we observe them on Earth today, are the product of ecological and evolutionary mechanisms55

interacting across spatial, temporal and organisational scales. The interwoven nature of these56

processes imposes structure on biodiversity data which is invisible when examined only through57

the lens of a single scale, however machine learning (ML) methods have enormous potential to58
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find this structure in data (Desjardins-Proulx, Poisot, and Gravel 2019), and have the potential59

to be used together with mechanistic models in order to make prediction of ecological dynamics60

more robust (Rackauckas et al. 2020).61

Here we use a case study to show how machine-learning models (specifically a deep neural net-62

work) can enable prediction of species interactions: we construct a metaweb of host-parasite63

interactions across space, using predictors extracted from empirical data and accounting for the64

structure of co-occurrence between species. We use this case study to illustrate a roadmap for65

improving predictions using open data and ML methods; specifically, we focus on how emerging66

tools from ML can be used to deliver more accurate and more efficient predictions of ecolog-67

ical systems, and how the potential of these approaches will be magnified with increased data68

access. We then provide a non-exhaustive primer on the literature on interaction prediction, and69

identify the tools and methods most suited for the future of interaction network prediction mod-70

els, covering the spatial, temporal, and climatic dimensions of network prediction (Burkle and71

Alarcon 2011). Both the case study and primer are largely geared towards binary (interactions72

are either present or absent) networks; there are limitations in data and tools that make it a more73

reasonable starting approach. First, most ecological networks do not have estimates of inter-74

action strength, and particularly not estimates that are independent from relative abundances.75

Second, the methodological toolkit to analyse the structure of networks is far more developed76

for binary interactions (Delmas et al. 2018), meaning that the predictions of binary interactions77

can be more readily interpreted.78

We argue that adopting a more predictive approach to complex ecological systems (like net-79

works) will establish a positive feedback loop with our understanding of these systems (Houla-80

han et al. 2017): the tasks of understanding and predicting are neither separate nor opposed81

(Maris et al. 2017); instead, ML tools have the ability to capture a lot of our understanding into82

working assumptions, and comparing predictions to empirical data gives us better insights about83

how much we ignore about the systems we model (see for example Borowiec et al. 2021, who84

provide an overview of deep learning techniques and concepts in ecology and evolution). Al-85

though data on species interaction networks are currently limited in the size and spatial coverage,86

machine learning approaches have a demonstrated track record of revealing the “unreasonable87
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effectiveness” of data (Halevy, Norvig, and Pereira 2009); we argue that with a clear roadmap88

guiding the use of these methods, the task of predicting species interaction networks will become89

more attainable.90

A case study: deep learning of spatially sparse host-parasite interac-91

tions92

The premise of this manuscript is that we can predict interactions between species. In this section93

we provide a proof-of-concept, where we use data from Hadfield et al. (2014) describing 51 host-94

parasite networks sampled across space. In this data, as in most spatially distributed ecological95

networks, not all species co-occur across sites. As a direct consequence there are pairs of species96

that may or may not be able to interact for which we have no data; furthermore there are pairs97

of species that may interact, but have only been documented in a single location where the98

interaction was not detected. In short, there are ecological reasons to believe that a number of99

negative associations in the metaweb (sensu J. Dunne 2006) are false negatives.100

Without any species-level information, we resort to using both co-occurrence and known inter-101

actions to predict novel interactions. To do this we (i) extract features (equivalent to explanatory102

variables in a statistical model) for each species based on co-occurrence, (ii) use these features103

to train an artificial neural network to predict interactions, and (iii) apply this classifier (an algo-104

rithm that assigns a categorical output based on input features) to the original features to predict105

potential interactions across the entire species pool. Machine learning relies on a lexicon that106

shares some terms with statistics, albeit with different meaning; we expand on the precise mean-107

ings in the “How to validate a predictive model” section below. The outputs of the analysis are108

presented in fig. 1, and the code to reproduce it is available at https://osf.io/6jp4b/; the109

entire example was carried out in Julia 1.6.2 (Bezanson et al. 2017), using the Flux machine110

learning framework (Innes 2018).111

We first aggregate all species into a co-occurrence matrix 𝐴 which represents whether a given112

pair of species (𝑖, 𝑗) was observed coexisting across any location. We then transform this co-113

occurrence matrix 𝐴 via probabilistic PCA (Tipping and Bishop 1999) and use the first 15 values114
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from this PCA space as the features vector for each species 𝑖. For each pair of (host, parasite)115

species (𝑖, 𝑗), we then feed the features vectors (𝑣𝑖, 𝑣𝑗) into a neural network. The neural network116

uses four feed-forward layers (each layer is independent from the one before and after); the first117

layer uses the RELU activation function (which ignores input below a threshold), the rest use a118

𝜎 function (which transforms linear activation energies into logistic responses). All layers have119

appropriate dropout rates (in order to avoid over-fitting, only a fraction of the network is updated120

on each iteration: 1 − 0.8 for the first layer, 1 − 0.6 for the subsequent ones). This produces an121

output layer with a single node, which is the probability-score for interaction between species 𝑖122

and 𝑗.123

We then train (equivalent to fit) this neural network by dividing the original dataset into testing124

and training sets (split 80-20 for training and testing respectively). During the training of this125

neural network (using the ADAM optimiser), the 5 × 104 batches of 64 items used for training126

were constrained to have at least 25% of positive interactions, as Poisot, Ouellet, et al. (2021)127

show slightly inflating the dataset with positive interactions enables us to counterbalance sam-128

pling biases. Furthermore, setting a minimum threshold of response balance is an established129

approach for datasets with strong biases (Lemaître, Nogueira, and Aridas 2017). Validating this130

model on the test data shows our model provides highly effective prediction of interactions be-131

tween pairs of species not present in the training data (fig. 1). The behaviour of the model was,132

in addition, checked by measuring the training and testing loss (difference between the actual133

value and the prediction, here using mean-squared error) and stopping well before they diverged134

(to avoid overfitting).135

[Figure 1 about here.]136

This case study shows that a simple neural network can be very effective in predicting species137

interactions even without additional species-level data. Applying this model to the entire dataset138

(including species pairs never observed to co-occur) identified 1546 new possible interactions –139

746 (48%) of which were between pairs of species for which no co-occurrence was observed in140

the original dataset. This model reaches similar levels of predictive efficacy as previous studies141

that use far more species-level data and mechanistic assumptions (Gravel et al. 2013), which142

7 of 58



serves to highlight the potential for including external sources of data for improving our predic-143

tion of interaction networks even further. For example, Krasnov et al. (2016) collected traits144

data for this system that could be added to the model, in addition or in substitution to latent145

variables derived from observed interactions.146

Predicting species interaction networks across space: challenges and147

opportunities148

Here we present a conceptual roadmap (fig. 2) which shows a conceptual path from data to149

prediction of species interaction networks, incorporating several modelling frameworks. We150

envisage this roadmap to be one conceptual path toward incorporating space in to our prediction151

of interaction networks, and developing spatially explicit models of networks and their proper-152

ties. In the following sections we discuss the challenges and opportunities for this path forward,153

and highlight two specific areas where it can have a strong impact: the temporal forecasting of154

species interaction networks structure, and the use of predicted networks for applied ecology155

and conservation biology.156

[Figure 2 about here.]157

Challenges: constraints on predictions158

Ecological network data are scarce and hard to obtain159

At the moment, prediction of species interactions is made difficult by the limited availability of160

data. Although we have seen a growth in species occurrence data, this growth is much slower161

for ecological interactions because species interactions are challenging to sample comprehen-162

sively (Bennett, Evans, and Powell 2019; Jordano 2016b) and sampling methodology has strong163

effects on the resulting data (de Aguiar et al. 2019). In turn, the difficulty of sampling interac-164

tions can lead to biases in our understanding of network structure (de Aguiar et al. 2019). This165

knowledge gap has motivated a variety of approaches to deal with interactions in ecological re-166

search based on assumptions that do not always hold, such as the assumption that co-occurrence167
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is equivalent to meaningful interaction strength (Blanchet, Cazelles, and Gravel 2020). Spatial168

biases in data coverage are prevalent at the global scale (with South America, Africa and Asia169

being under-represented) and different interaction types show biases towards different biomes170

(Poisot, Bergeron, et al. 2021). These “spatial gaps” serve as a limitation to our ability to con-171

fidently make predictions when accounting for real-world environmental conditions, especially172

in environments for which there are no analogous data.173

Further, empirical estimation of interaction strength is highly prone to bias as existing data are174

usually summarised at the taxonomic scale of the species or higher, thereby losing informa-175

tion that differentiates the strength in per-individual interactions from the strength of a whole176

species interaction (Wells and O’Hara 2013). Empirical estimations of interaction strength are177

still crucial (Novak and Wootton 2008), but are a hard task to quantify in natural communities178

(Wootton 1997; Sala and Graham 2002; Wootton and Emmerson 2005), especially as the num-179

ber of species composing communities increases, compounded by the possibility of higher-order180

interactions or non-linear responses in interactions (Wootton and Emmerson 2005). Further,181

interaction strength is often variable and context dependent and can be influenced by density-182

dependence and spatio-temporal variation in community composition (Wootton and Emmerson183

2005).184

Powerful predictive tools work better on large data volumes185

This scarcity of data limits the range of computational tools that can be used by network ecolo-186

gists. Most deep learning methods, for instance, are very data expensive. The paucity of data is187

compounded by a collection of biases in existing datasets. Species interaction data are typically188

dominated by food webs, pollination, and host-parasite networks (Ings et al. 2009; Poisot et al.189

2020). This could prove to be a limiting factor when trying to understand or predict networks190

of underrepresented interaction types or when trying to integrate networks of different types191

(Fontaine et al. 2011), especially given their inherent structural variation (Michalska-Smith and192

Allesina 2019). This stresses the need for an integrated, flexible, and data-efficient set of com-193

putational tools which will allow us to predict ecological networks accurately from existing and194

imperfect datasets, but also enable us to perform model validation and comparison with more195
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flexibility than existing tools. We argue that fig. 1 is an example of the promise of these tools196

even when facing datasets of small size. The ability to extract and engineer features also serves197

to bolster our predictive power. Although it may be tempting to rely on approaches like boot-198

strapping to estimate the consistency of the predictions, we are confronted with the issues of199

low data volume and data bias—that we are more likely to observe interactions between some200

pairs of species (i.e. those that co-occur often, e.g. Cazelles et al. (2015), and those with higher201

relative abundance, e.g. Vazquez et al. (2009)). This introduces risk in training models on202

pseudo-replicated data. In short, the current lack of massive datasets must not be an obstacle to203

prediction; it is an ideal testing ground to understand how little data is sufficient to obtain action-204

able predictions, and how much we can rely on data inflation procedures to reach this minimal205

amount.206

Scaling-up predictions requires scaled-up data207

We are also currently limited by the level of biological organisation at which we can describe208

ecological networks. For instance, our understanding of individual-based networks (e.g., M. S.209

Araújo et al. 2008; Tinker et al. 2012) is still in its infancy (Guimarães 2020) and acts as a210

resolution-limit. Similarly, the resolution of environmental (or landscape) data also limits our211

ability to predict networks at small scales, although current trends in remote sensing would sug-212

gest that this will become less of a hindrance with time (Makiola et al. 2020). Ecosystems are213

a quintessential complex-adaptive-system (Levin 1998) with a myriad of processes at different214

spatial, temporal, and organisational scales that influence and respond to one another. Under-215

standing how the product of these different processes drive the properties of ecosystems across216

different scales remains a central challenge of ecological research, and we should strive to work217

on methods that will integrate different empirical “snapshots” of this larger system.218
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Opportunities: an emerging ecosystem of open tools and data219

Data are becoming more interoperable220

The acquisition of biodiversity and environmental data has tremendously increased over the past221

decades thanks to the rise of citizen science (J. L. Dickinson, Zuckerberg, and Bonter 2010) and222

of novel technology (Stephenson 2020), including wireless sensors (Porter et al. 2005), next-223

generation DNA sequencing (Creer et al. 2016), and remote sensing (Skidmore and Pettorelli224

2015; Lausch et al. 2016). Open access databases, such as GBIF (for biodiversity data), NCBI225

(for taxonomic and genomics data), TreeBASE (for phylogenetics data), CESTE (Jeliazkov et226

al. 2020) (for metacommunity ecology and species traits data), and WorldClim (for bioclimatic227

data) contain millions of data points that can be integrated to monitor and model biodiversity at228

the global scale. For species interactions data, at the moment Mangal is the most comprehensive229

open database of published ecological networks (Poisot et al. 2016), and GloBI is an extensive230

database of realised and potential species interactions (Poelen, Simons, and Mungall 2014). De-231

veloping standard practices in data integration and quality control (Kissling et al. 2018) and in232

next-generation biomonitoring (NGB; Makiola et al. 2020) would improve our ability to make233

reliable predictions of ecosystem properties on increasing spatial and temporal scales. The ad-234

vancement of prediction techniques coupled with a movement towards standardising data col-235

lection protocols (e.g. Pérez-Harguindeguy et al. (2013) for plant functional traits) and metadata236

(e.g. DarwinCore)—which facilitates interoperability and integration of datasets—as well as a237

growing interest at the government level (Scholes et al. 2012) paints a positive picture for data238

access and usability in the coming years.239

Machine learning tools are becoming more accessible240

This effort is also supported by a thriving ecosystem of data sources and novel tools. ML meth-241

ods can often be more flexible and perform better than classical statistical methods, and can242

achieve a very high level of accuracy in many predictive and classification tasks in a relatively243

short amount of time (e.g., Cutler et al. 2007; Krizhevsky, Sutskever, and Hinton 2017). In-244

creasing computing power combined with recent advances in machine learning techniques and245
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applications shows promise in ecology and environmental science (see Christin, Hervet, and246

Lecomte (2019) for an overview). Moreover, ongoing developments in deep learning are aimed247

at improvement in low-data regimes and with unbalanced datasets (Antoniou, Storkey, and Ed-248

wards 2018; Chawla 2010). Considering the current biases in network ecology (Poisot, Berg-249

eron, et al. 2021) and the scarcity of data of species interactions, the prediction of ecological250

networks will undoubtedly benefit from these improvements. Machine learning methods are251

emerging as the new standard in computational ecology in general (Olden, Lawler, and Poff252

2008; Christin, Hervet, and Lecomte 2019), and in network ecology in particular (Bohan et al.253

2017), as long as sufficient, relevant data are available. Many studies have used machine learn-254

ing models specifically with ecological interactions. Relevant examples include species traits255

used to predict interactions and infer trait-matching rules (Desjardins-Proulx et al. 2017; Pichler256

et al. 2020), automated discovery of food webs (Bohan et al. 2011), reconstruction of ecologi-257

cal networks using next-generation sequencing data (Bohan et al. 2017), and network inference258

from presence-absence data (Sander, Wootton, and Allesina 2017). As many ecological and evo-259

lutionary processes underlie species interactions and the structure of their ecological networks260

(e.g., Vazquez et al. 2009; Segar et al. 2020), it can be difficult to choose relevant variables and261

model species interactions networks explicitly. A promising application of machine learning in262

natural sciences is Scientific-Machine Learning (SciML), a framework that combines machine263

learning with mechanistic models (Chuang and Keiser 2018; Rackauckas et al. 2020).264

A primer on predicting ecological networks265

Within the constraints outlined in the previous section, we now provide a primer on the back-266

ground concepts necessary to build predictive models of species interaction networks, with a267

focus on using machine learning approaches in the modelling process. As fig. 2 illustrates, this268

involves a variety of numerical and computational approaches; therefore, rather than an exhaus-269

tive summary, we aim to convey a high-level understanding that translates the core concepts into270

their application to ecological networks.271
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Models272

What is a predictive model?273

Models are used for many purposes, and the term “model” itself embodies a wide variety of274

meanings in scientific discourse. All models can be thought of as a function, 𝑓 , that takes a set275

of inputs 𝑥 (also called features, descriptors, or independent variables) and parameters 𝜃, and276

maps them to predicted output states 𝑦 (also called label, response, or dependent variable) based277

on the input to the model: 𝑦 = 𝑓 (𝑥, 𝜃).278

A given model 𝑓 can be used for either descriptive or predictive purposes. Many forms of sci-279

entific inquiry are based around using models descriptively, a practice also called inference, the280

inverse problem, fitting a model, or training a model (Stouffer 2019). In this context, the goal of281

using a model is to estimate the parameters, 𝜃, that best explain a set of empirical observations,282

{𝑥̂, 𝑦̂}. In some cases, these parameter values are themselves of interest (e.g., the strength of283

selection, intrinsic growth rate, dispersal distance), but in others cases, the goal is to compare a284

set of competing models 𝑓1, 𝑓2,… to determine which provides the most parsimonious explana-285

tion for a dataset. The quantitative representation of “effects” in these models—the influence of286

each input on the output—is often assumed to be linear, and within the frequentist world-view,287

the goal is often to determine if the coefficient corresponding with an input is non-zero to deter-288

mine its “significance” (often different from its ecological relevance; Martínez-Abraín 2008) in289

influencing the outcome.290

Models designed for inference have utility—descriptive models of networks can reveal under-291

lying mechanisms that structure ecological communities, given a proper null model (Connor,292

Barberán, and Clauset 2017). However, in order for ecology to develop as a predictive science293

(Evans, Norris, and Benton 2012), interest has grown in developing models that are used not294

just for description of data, but also for prediction. Predictive models are based in the forward295

problem, where the aim is to predict new values of the output 𝑦 given an input 𝑥 and our estimate296

value of 𝜃 (Stouffer 2019). Because the forward problem relies on an estimate of 𝜃, then, the297

problem of inference is nested within the forward problem (fig. 3): working towards a predictive298

view of ecological networks will give us the needed tools to further our understanding of them.299
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[Figure 3 about here.]300

What do you need to build a predictive model?301

To build a predictive model, one needs the following: first, data, split into features 𝑥̂ and labels302

𝑦̂ (fig. 3). Second, a model 𝑓 , which maps features 𝑥 to labels 𝑦 as a function of parameters 𝜃,303

i.e. 𝑦 = 𝑓 (𝑥, 𝜃). Third, a loss function 𝐿(𝑦̂, 𝑦), which describes how far a model’s prediction304

𝑦 is from an empirical value 𝑦̂. Lastly, priors on parameters, 𝑃 (𝜃), which describe the mod-305

eller’s a priori belief about the value of the parameters; rather than making an analysis implicit,306

specifying priors has the merit of making the modeller’s assumptions explicit, which is a most307

desirable feature when communicating predictions to stakeholders (Spiegelhalter et al. 2000).308

Often an important step before fitting a model is feature engineering: adjusting and reworking309

the features to better uncover feature-label relationships (Kuhn and Johnson 2019). This can310

include projecting the features into a lower dimensional space, as we did through a probabilistic311

PCA in the case study, or removing the covariance structure using a Whitening approach. Then,312

when a model is fitted (synonymous with parameter inference or the inverse problem, see fig. 3),313

a fitting algorithm attempts to estimate the values of 𝜃 that minimises the mean value of loss314

function 𝐿(𝑦̂, 𝑦) for all labels 𝑦̂ in the provided data 𝑌 . In a Bayesian approach, this typically315

relys on drawing candidate parameter values from priors and applying some form of sampling316

to generate a posterior estimate of parameters, 𝑃 (𝜃|𝑥̂, 𝑦̂). In the training of neural networks,317

this usually involves some form of error back-propagation across the edges in order to tune their318

weights, and the biases of each nodes.319

How do we validate a predictive model?320

After we fit a model, we inevitably want to see how “good” (meaning, “fit for purpose”) it is.321

This process can be divided into two parts: (i)) model selection, where the modeller chooses322

from a set of possible models and (ii) model assessment, where the modeller determines the323

performance characteristics of the chosen model (Hastie, Tibshirani, and Friedman 2009).324

In the context of model selection, a naïve initial approach is to simply compute the average error325
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between the model’s prediction and the true data we have, and choose the model with the smallest326

error—however this approach inevitably results in overfitting. One approach to avoid overfitting327

is using information criteria (e.g., AIC, BIC, MDL) based around the heuristic that good mod-328

els maximise the ratio of information provided by the model to the number of parameters it has.329

However, when the intended use-case of a model is prediction the relevant form of validation330

is predictive accuracy, which should be tested with cross-validation. Cross-validation meth-331

ods divide the original dataset into two—one which is used to fit the model (called the training332

set) and one used to validate its predictive accuracy on the data that it hasn’t “seen” yet (called333

the test set) (Bishop 2006). This procedure is often repeated across different test and training334

subdivisions of the dataset (either picked randomly or stratified by some criteria, like balance335

between positive and negative interactions in the case study) to determine the uncertainty asso-336

ciated with our measurement due to our choice of test and training sets (Arlot and Celisse 2010),337

in the same conceptual vein as data bootstrapping: the mean value of the validation metric gives338

an overall estimate of its performance, and the variance around this mean represents the effect of339

using different data for training and testing. In a robust model/dataset combination, we expect340

this variance to be low, although there are no prescriptive guidelines as to how little variance341

is acceptable; the choice of whether to use a model is often left to the best judgement of the342

modeller.343

We still have to define what predictive accuracy means in the context of interaction network344

prediction. In the proof-of-concept, we used a neural-network to perform binary classification345

by predicting the presence/absence of an interaction between any two species. There are two346

ways for the model to be right: the model predicts an interaction and there is one (a true positive347

(TP)), or the model predicts no interaction and there isn’t one (a true negative (TN)). Similarly,348

there are two ways for the model to be wrong: the model predicts an interaction which does not349

exist (a false positive (FP)), or the model predicts no interaction but it does exist (a false negative350

(FN)).351

A naïve initial approach to measure how well a model does is accuracy, i.e. the proportion352

of values it got correct. However, consider what we know about interaction networks: they353

are often very sparse, with connectance usually below a third (Cohen, Briand, and Newman354
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1990). If we build a model that always guesses there will be no interaction between two species,355

it will be correct in the majority of cases because the majority of potential interactions in a356

network typically do not exist. Therefore this “empty-matrix” model would always have an357

accuracy of 1−𝐶 , where 𝐶 is the observed connectance, which would almost always be greater358

than 50%. Understanding model performance within sensitivity-specificity space may be more359

informative, where sensitivity evaluates how good the model is at predicting true interactions360

(True Positive Rate) and specificity refers to the prediction of true “non-interactions” (True361

Negative Rate). It must be noted that in ecological networks, there is no guarantee that the “non-362

interactions” (assumed true negatives) in the original dataset are indeed true negatives (Jordano363

2016a, 2016b). This can result in the positive/negative values, and the false omission/discovery364

being artificially worse, and specifically decrease our confidence in predicted interactions.365

In response to the general problem of biases in classifiers, many metrics have been proposed366

to measure binary-classifiers (Gu, Zhu, and Cai 2009; Drummond and Holte 2006) and are367

indicative of how well the model performs with regards to some aspect of accuracy, sensitivity,368

specificity and/or precision (tbl. 1). Ultimately the choice of metric will depend on the intended369

use of the model: there is not a single definition of “success,” but rather different interpretation370

of what sources of error are acceptable for a given application.371

Table 1: Overview of the validation statistics applied to the case study, alongside the criteria
indicating a successful classifier and a guide to interpretation of the values. Taken together,
these validation measures indicate that the model performs well, especially considering that it
is trained from a small volume of data.

Name Value Success Description

Random accuracy 0.56 Fraction of correct predictions if the classifier
is random

Accuracy 0.81 → 1 Observed fraction of correct predictions
Balanced accuracy 0.80 → 1 Average fraction of correct positive and

negative predictions

True Positive Rate 0.77 → 1 Fraction of interactions predicted
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Name Value Success Description

True Negative Rate 0.83 → 1 Fraction of non-interactions predicted
False Positive Rate 0.16 → 0 Fraction of non-interactions predicted as

interactions
False Negative Rate 0.22 → 0 Fraction of interactions predicted as

non-interactions

ROC-AUC 0.86 → 1 Proximity to a perfect prediction
(ROC-AUC=1)

Youden’s J 0.60 → 1 Informedness of predictions (trust in
individual prediction)

Cohen’s 𝜅 0.58 ≥ 0.5

Positive Predictive
Value

0.66 → 1 Confidence in predicted interactions

Negative Predictive
Value

0.89 → 1 Confidence in predicted non-interactions

False Omission
Rate

0.10 → 0 Expected proportion of missed interactions

False Discovery
Rate

0.33 → 0 Expected proportion of wrongly imputed
interactions

In the machine learning literature, a common way of visualising this extensive list of possible372

metrics is through the use of ROC (receiver-operating-characteristic; False Positive Rate on the373

x-axis, and True Positive Rate on the y-axis) and PR (precision-recall; True-Positive-Rate on374

the x-axis, Positive-predictive-value on the y-axis) curves (see fig. 1). These curves are gen-375

erated by considering a continuum of thresholds of classifier acceptance, and computing the376

values of ROC/PR metrics for each value of the threshold. The area-under-the-curve (AUC)377

is then used as a validation metric and are typically called AUC-ROC (Area-Under-the-Curve378
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Receiver-Operator-Curve) and AUC-PR (Area-Under-the-Curve Precision-Recall) (e.g. ROC-379

AUC in tbl. 1). These measures have the unstated assumption that the training and testing set are380

“correct,” or at least correct enough that the number of true/false positive/negatives are meaning-381

ful; although should this assumption be true, there would be no need for any predictive approach382

– but it is a well established fact that machine learning systems are resilient to even relatively383

high uncertainties in the data (Halevy, Norvig, and Pereira 2009).384

Networks and interactions as predictable objects385

Why predict networks and interactions at the same time?386

Ecological networks are quite sparse, and larger networks tend to get sparser (MacDonald,387

Banville, and Poisot 2020); in other words, although networks are composed of a set of in-388

teractions between species pairs, they also form a much larger set of species pairs that do not389

interact. If we aim to predict the structure of networks from the “bottom-up”— by consider-390

ing each pairwise combination of 𝑆 different species—we are left with 𝑆2 interaction values391

to estimate, a majority of which will be 0. Instead, we can use our existing understanding of392

the mechanisms that structure ecological networks to whittle down the set of feasible adjacency393

matrices, thereby reducing the amount of information we must predict, and making the problem394

of predicting interactions less daunting. The processes that structure ecological networks do not395

only occur at the scale of interactions—there are also processes at the network level which limit396

what interactions (or how many) are realistic. The realised structure of a network is the synthesis397

of the interactions forming the basis for network structure, and the network structure refining the398

possible interactions—“Part makes whole, and whole makes part” (Levins and Lewontin 1987).399

Another argument for the joint prediction of networks and interactions is to reduce circularity400

and biases in the predictions. As an example, models like linear filtering (Stock et al. 2017) gen-401

erate probabilities of non-observed interactions existing, but do so based on measured network402

properties. Some recent models make interaction-level predictions (e.g. Gravel et al. 2019);403

these are not unlike stacked species distribution models, which are individually fit, but collec-404

tively outperformed by joint models or rule-based models (Zurell et al. 2020). By relying on405
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adequate testing of model performance of biases (i.e. optimising not only accuracy, but pay-406

ing attention to measures like false discovery and false omission rates), and developing models407

around a feedback loop between network and interaction prediction, it is likely that the quality408

of the predicted networks will be greatly improved compared to current models.409

What network properties should we use to inform our predictions of interactions?410

There are many dimensions of network structure (Delmas et al. 2018), yet there are two argu-411

ments to support basing network prediction around a single property: connectance (the ratio of412

actual edges to possible edges in the network). First, connectance is ecologically informative—413

it relates to resilience to invasion (Baiser, Russell, and Lockwood 2010; Smith-Ramesh, Moore,414

and Schmitz 2016), can increase robustness to extinction in food webs (J. Dunne, Williams, and415

Martinez 2002), while decreasing it in mutualistic networks (Vieira and Almeida-Neto 2015),416

and connectance relates to network stability (Landi et al. 2018). Second, most (if not all) net-417

work properties covary with connectance (Poisot and Gravel 2014; J. A. Dunne, Williams, and418

Martinez 2002).419

Within the network science literature, there are numerous methods for predicting edges based420

on network properties (e.g., block models (Yen and Larremore 2020) based on modularity, hi-421

erarchical models (Kawakatsu et al. 2021) based on embedding, etc.). However, in the context422

of species interaction networks, these properties often covary with connectance. As a result we423

suggest that using connectance as the primary property of interest is most likely to be practical424

to formulate at the moment. We have models to estimate species richness over space (Jenkins,425

Pimm, and Joppa 2013), and because we can predict connectance from species richness alone426

(MacDonald, Banville, and Poisot 2020), we can then derive distributions of network properties427

from richness estimates, that can serve to penalise further models that formulate their predictions428

at the scale of each possible interaction.429
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How do we predict how species that we have never observed together will interact?430

A neutral approach to ecological interactions would assume the probability of an interaction to431

mirror the relative abundance of both species, and would be unaffected by trait variation (Poisot,432

Stouffer, and Gravel 2015; Pichler et al. 2020); more accurately, a neutral assumption states433

that the relative abundances are sufficient to predict the structure of networks, and this view is434

rather well supported in empirical and theoretical systems (Canard et al. 2012, 2014). However,435

functional-trait based proxies could enable better predictions of ecological interactions (Cirtwill436

and Eklöf 2018; Cirtwill et al. 2019; Bartomeus et al. 2016; Bartomeus 2013). Selection437

on functional traits could cause interactions to be conserved at some evolutionary scales, and438

therefore predictions of interaction could be informed by phylogenetic analyses (Davies 2021;439

Elmasri et al. 2020; Gómez, Verdú, and Perfectti 2010). Phylogenetic matching in bipartite440

networks is consistent across scales (Poisot and Stouffer 2018), even in the absence of strong441

selective pressure (Coelho, Rodrigues, and Rangel 2017).442

A separate family of methods are based on network embedding (as in the proof-of-concept). A443

network embedding projects each node of the network into a lower-dimensional latent space.444

Previous explorations of the dimensionality of food webs have revealed that a reduced number445

of dimensions (7) was sufficient to capture most of their structure (Eklöf et al. 2013); however,446

recent quantifications of the complexity of the embedding space of bipartite ecological networks447

found a consistent high complexity (Strydom, Dalla Riva, and Poisot 2021), suggesting that448

the precise depth of embedding required may vary considerably across systems. Embeddings449

enables us to represent the structure of a network, which previously required the 𝑆2 dimensions450

of an adjacency matrix, with a smaller number of dimensions. The position of each node in this451

lower dimensional space is then treated as a latent measurement corresponding to the role of that452

species in the network (e.g. Poisot, Ouellet, et al. 2021, where a network of about 1500 species453

was most accurately described using 12 dimensions). Species close together in the latent space454

should interact with similar set of species (Rossberg et al. 2006; Rohr et al. 2010). However,455

these models are sensitive to sampling biases as they are limited to species for which there is456

already interaction data, and as a result a methodological breakthrough is needed to extend these457

models to species for which there is little or no interaction data.458
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How do we quantify interaction strength?459

Species interaction networks can also be used as a means to quantify and understand interaction460

strength. Interaction strength, unlike the qualitative presence or absence of an interaction, is a461

continuous measurement which attempts to quantify the effect of one species on another. This462

results in weighted networks representing different patterns of ‘flows’ between nodes – which463

can be modelled in a variety of ways (Borrett and Scharler 2019). Interaction strength can gen-464

erally be divided into two main categories (as suggested by Berlow et al. (2004)): 1) the strength465

of an interaction between individuals of each species, or 2) the effect that changes in one species466

population has on the dynamics of the other species. It can be measured as the effect over a pe-467

riod of time (in the units of biomass or energy flux (Barnes et al. 2018; Brown et al. 2004)) or the468

relative importance of one species on another (Heleno et al. 2014; Berlow et al. 2004; Wootton469

and Emmerson 2005). One recurring observation is that networks are often composed of many470

weak interactions and few strong interactions (Berlow et al. 2004). The distribution of interac-471

tion strength within a network effects its stability (Neutel 2002; Ruiter, Neutel, and Moore 1995)472

and functioning (Duffy 2002; José M. Montoya, Rodríguez, and Hawkins 2003), and serves to473

benefit multi-species models (Wootton and Emmerson 2005). Alternatively, understanding flow474

in modules within networks can aid in understanding the organisation of networks (Farage et al.475

2021; Jose M. Montoya and Solé 2002) or the cascading effects of perturbations (Gaiarsa and476

Guimarães 2019).477

In some systems, quantifying interaction strength is relatively straightforward; this includes a478

lot of host-parasite systems. For example, freshwater cyprinid fish can be divided in micro-479

habitats (fins, skin, digestive system, gill subsections) and the parasites counted in each of these480

micro-habitats, giving within-host resolution (Simková et al. 2002); marine sparids and labrids481

have similarly been studied this way, see notably (Sasal, Niquil, and Bartoli 1999; Desdevises482

2006; Morand et al. 2002). In some cases, within-host assessments of interaction strengths483

can reveal macro-ecological events, like in the conservatism of micro-habitat use in amphibian484

hosts by helminths (Badets et al. 2011). Even ectoparasites can provide reliable assessments485

of interaction strength; for example, when rodent hosts are minimally disturbed during capture,486

fine combing of their fur will result in exhaustive ectoparasites inventories (Hadfield et al. 2014;487
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Karbowiak et al. 2019; Matthee et al. 2020; Sánchez et al. 2014; E. R. Dickinson, Millins, and488

Biek 2020). Parasites have the desirable property of usually remaining intact within their host489

during the interaction, as opposed to prey items as can be recovered through e.g. gut content490

analysis or stable isotopes (Macías-Hernández et al. 2018; Schmid-Araya et al. 2016). As491

network ecology is starting to explore the use of predictive models, leading up to forecasting,492

we argue that host-parasite systems can provide data that are reliable and trustworthy enough493

that they can become the foundations for methodological development and benchmark studies,494

thereby providing more information about host-parasite systems and supporting the technical495

development of the field.496

Yet in most situations, much like quantifying the occurrence of an interaction, quantifying in-497

teraction strength in the field is challenging in the majority of systems, and one must often498

rely on proxies. In some contexts, interaction strength can be estimated via functional foraging499

(Portalier et al. 2019), where the primary basis for inferring interaction is foraging behaviour500

like searching, capture and handling times. In food-webs, metabolic based models use body501

mass, metabolic demands, and energy loss to infer energy fluxes between organisms (Yodzis502

and Innes 1992; Berlow et al. 2009). In addition, food-web energetics models can be incorpo-503

rated at various resolutions for a specific network, ranging from individual-based data to more504

lumped data at the species level or trophic group, depending on data availability (Barnes et al.505

2018; Berlow et al. 2009). Taken together, these considerations impose too many constraints506

on predicting continuous interaction strength at the moment, resulting in our primary focus in507

binary present/absent interactions within this manuscript.508

How do we determine what interaction networks are feasible?509

For several decades, ecologists have aimed to understand how networks of many interacting510

species persist through time. The diversity-stability paradox, first explored by May (1974),511

shows that under a neutral set of assumptions ecological networks should become decreasingly512

stable as the number of species increases. Yet, in the natural world we observe networks of513

interactions that consist of far more species than May’s model predicts (Albouy et al. 2019).514

As a result, understanding what aspects of the neutral assumptions of May’s model are incor-515
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rect has branched many investigations into the relationship between ecological network structure516

and persistence (Allesina and Tang 2012). These assumptions can be split into dynamical as-517

sumptions and topological assumptions. Topologically, we know that ecological networks are518

not structured randomly. Some properties, like the aforementioned connectance, are highly pre-519

dictable (MacDonald, Banville, and Poisot 2020). Generative models of food-webs (based on520

network embeddings) fit empirical networks more effectively than random models (Allesina,521

Alonso, and Pascual 2008). These models have long used allometry as a single-dimensional522

niche space—naturally we want to extend this to traits in general. The second approach to sta-523

bility is through dynamics. Early models of community dynamics rely on the assumption of524

linear interaction effects, but in recent years models of bioenergetic community dynamics have525

shown promise in basing our understanding of energy flow in food-webs in the understood rela-526

tionship between allometry and metabolism (Delmas et al. 2017). An additional consideration527

is the multidimensional nature of “stability” and “feasibility” (e.g. resilience to environmental528

change vs extinctions) (Domínguez-García, Dakos, and Kéfi 2019) and how different distur-529

bances propagate across levels of biological organisation (Kéfi et al. 2019; Gravel, Massol, and530

Leibold 2016). Recent approaches such as structural stability (Saavedra et al. 2017; Ferrera,531

Pascual-García, and Bastolla 2016) allow us to think of network feasibility in rigorous mathe-532

matical terms, which may end up as usable parameters to penalise network predictions.533

What taxonomic scales are suitable for the prediction of species interactions?534

If we use different trait-based proxies to predict potential interactions between species the choice535

of such proxies should be theoretically linked to the taxonomic and spatial scale we are using in536

our prediction (Wiens 1989). At some scales we can use morphological traits of co-occurring537

species to assess the probability of interaction between them (Bartomeus et al. 2016). On538

broader taxonomic scales we can infer interaction probability through the phylogenetic distance,539

assuming that functional traits themselves are conserved (Gómez, Verdú, and Perfectti 2010).540

In this case, we can think of the probability that one species will interact with another as the541

distance between them in niche-space (Desjardins-Proulx et al. 2017), and this can be modelled542

by simulating neutral expectations of trait variation on phylogenetic trees (Davies 2021). At the543
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narrowest scales, we may be interested in predicting behavioural traits like foraging behaviour544

(Bartomeus et al. 2016), and at this scale we may need to consider abundance’s effect on the545

probability of an encounter (Wells and O’Hara 2013).546

What about indirect and higher-order interactions?547

Although network ecology often assumes that interactions go strictly from one node to the other,548

the web of life is made up of a variety of interactions. Indirect interactions—either higher-order549

interactions between species, or interaction strengths that themselves interact — have gained550

interest in recent years (Golubski et al. 2016; Golubski and Abrams 2011). One mathemat-551

ical tool to describe these situations is hypergraphs: hypergraphs are the generalisation of a552

graph, allowing a broad yet manageable approach to complex interactions (Carletti, Fanelli, and553

Nicoletti 2020), by allowing for particular interactions to occur beyond a pair of nodes. An ad-554

ditional degree of complexity is introduced by multi-layer networks (Hutchinson et al. 2019).555

Multi-layer networks include edges across “variants” of the networks (timepoints, locations, or556

environments). These can be particularly useful to account for the metacommunity structure557

(Gross et al. 2020), or to understand how dispersal can inform conservation action (Albert et558

al. 2017). Ecological networks are intrinsically multi-layered (Pilosof et al. 2017). However,559

prima facie, increasing the dimensionality of the object we need to predict (the multiple layers560

rather than a single network) makes the problem more complicated. Yet, multi-layer approaches561

improve prediction in social networks (Jalili et al. 2017; Najari et al. 2019; Yasami and Safaei562

2018), and they may prove useful in network ecology going forward.563

Space564

Although networks were initially used to describe the interactions within a community, interest565

in the last decade has shifted towards understanding their structure and variation over space566

(Trøjelsgaard and Olesen 2016; Baiser et al. 2019), and has established network ecology as an567

important emerging component of biogeography and macroecology.568
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How much do networks vary over space?569

Networks can vary across space either in their structural properties (e.g. connectance or degree570

distribution) or in their composition (identity of nodes and edges). Interestingly, variation in571

the structural properties of ecological networks primarily responds to changes in the size of the572

network. The number of links in ecological networks scales with the number of species (Mac-573

Donald, Banville, and Poisot 2020; Brose et al. 2004), and connectance and size drive the rest574

of network structure (Poisot and Gravel 2014; J. A. Dunne, Williams, and Martinez 2002; Riede575

et al. 2010). Species turnover in space results in changes in the composition of ecological net-576

works. But, this is not the only reason network composition varies (Poisot, Stouffer, and Gravel577

2015). Intraspecific variation can result in interaction turnovers without changes in species com-578

position (Bolnick et al. 2011). Similarly, changes in species abundances can lead to variation in579

interaction strengths (Canard et al. 2014; Vázquez et al. 2007). Variation in the abiotic environ-580

ment and indirect interactions (Golubski et al. 2016) could modify the occurrence and strength581

of individual interactions. Despite this, empirical networks tend to share a common backbone582

(Mora et al. 2018) and functional composition (Dehling et al. 2020) across space.583

How do we predict what the species pool at a particular location is?584

As the species pool forms the basis for network structure, predicting which species are present585

at a particular location is essential to predict networks across space. Species distribution mod-586

els (SDMs) are increasingly ubiquitous in macroecology— these models predict the range of a587

species based on known occurrences and environmental conditions, such as climate and land588

cover (Guisan and Thuiller 2005; Elith et al. 2006). Including interactions or co-occurrences589

in SDMs generally improves predictive performance (Wisz et al. 2013). Several approaches590

exist to combine multiple SDMs: community assemblage at a particular site can be predicted591

either by combining independent single-species SDMs (stacked-SDMs, SSDMs) or by directly592

modelling the entire species assemblage and multiple species at the same time (joint SDMs,593

JSDMs) (Norberg et al. 2019). Building on the JSDM framework, hierarchical modelling of594

species communities (Ovaskainen et al. 2017) has the advantage of capturing processes that595

structure communities. Spatially Explicit Species Assemblage Modelling (SESAM) constrains596
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SDM predictions using macro-ecological models (Guisan and Rahbek 2011) — for example,597

variation in species richness across space can constrain assemblage predictions (D’Amen et al.598

2015).599

The next step is to constrain distribution predictions using network properties. This builds on600

previous calls to adopt a probabilistic view: a probabilistic species pool (Karger et al. 2016),601

and probabilistic interactions through Bayesian networks (Staniczenko et al. 2017). Blanchet,602

Cazelles, and Gravel (2020) argue that the probabilistic view avoids confusion between inter-603

actions and co-occurrences, but that it requires prior knowledge of interactions. This could604

potentially be solved through our framework of predicting networks first, interactions next, and605

finally the realised species pool.606

How do we combine spatial and network predictions?607

In order to predict networks across space, we need to combine multiple models—one which608

predicts what the species pool will be at a given location, and one to predict what interaction609

networks composed from this species pool are likely to be (see fig. 2). Both of these models610

contain uncertainty, and when we combine them the uncertainty from each model should be611

propagated into the combined model. The Bayesian paradigm provides a convenient solution to612

this—if we have a chain of models where each model feeds into the next, we can sample from613

the posterior of the input models. A different approach is ensemble modelling which combines614

the predictions made by several models, where each model is predicting the same thing (Parker615

2013). Error propagation, an important step in building any ecological model, describes the616

effect of the uncertainty of input variables on the uncertainty of output variables (Draper 1995;617

Parysow, Gertner, and Westervelt 2000). Benke et al. (2018) identifies two broad approaches to618

model error propagation: analytically using differential equations or stochastically using Monte-619

Carlo simulation methods. Errors induced by the spatial or temporal extrapolation of data also620

need to be taken into account when estimating the uncertainty of a model’s output (Peters and621

Herrick 2004).622

26 of 58



Time623

Why should we forecast species interaction networks?624

Forecasting species interactions are critical for informing ecosystem management (Harvey et625

al. 2017) and systematic conservation prioritisation (Pollock et al. 2020), and for anticipating626

extinctions and their consequences (McDonald-Madden et al. 2016; McWilliams et al. 2019).627

Ecological interactions shape species distributions at both local and broad spatial scales, and628

including interactions in SDM models typically improves predictive performance (M. B. Araújo629

and Luoto 2007; Wisz et al. 2013; Pigot and Tobias 2013). However, these tend to rely on ap-630

proaches involving estimating pairwise dependencies based on co-occurrence, using surrogates631

for biotic-interaction gradients, and hybridising SDMs with dynamic models (Wisz et al. 2013).632

Most existing models to predict the future distribution of species ignore interactions (Urban et633

al. 2016). Changes in species ranges and phenology will inevitably create spatiotemporal mis-634

matches and affect encounter rates between species (Gilman et al. 2010), which will further635

shift the distribution of species across space. New interactions will also appear between species636

that are not currently co-occurring (Gilman et al. 2010). Only by forecasting how species will637

interact can we hope to have an accurate portrait of how biodiversity will be distributed under638

the future climate.639

Forecasting how climate change will alter biodiversity is also crucial for maximising conserva-640

tion outcomes. Improving SDMs through interactions is crucial for conservation, as nearly 30%641

of models in SDM studies are used to assess population declines or landscape ability to support642

populations (M. B. Araújo et al. 2019). Reliable predictions about how ecological networks643

will change over time will give us critical information that could be communicated to decision-644

makers and the scientific community about what future environmental risks we are awaiting and645

how to mitigate them (Kindsvater et al. 2018). Not only this, but how biodiversity is struc-646

tured influences the functioning of the whole ecosystem, community stability and persistence647

(Thompson et al. 2012; Stouffer and Bascompte 2010). Will climate change impact the distri-648

bution of network properties (e.g. connectance)? If so, which regions or species groups need649

special conservation efforts? These overarching questions are yet to be answered (but see Albouy650
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et al. 2013; Kortsch et al. 2015; Hattab et al. 2016). We believe that the path toward forecasting651

ecological networks provides useful guidelines to ultimately better predict how climate change652

will affect the different dimensions of biodiversity and ecosystem functioning.653

How do we turn a predictive model into a forecasting model?654

On some scales, empirical time-series encode enough information about ecological processes655

for machine-learning approaches to make accurate forecasts. However, there is an intrinsic limit656

to the predictability of ecological time-series (Pennekamp et al. 2019). A forecast inherently has657

a resolution limit in space, time, and organisation. For example, one could never hope to predict658

the precise abundance of every species on Earth on every day hundreds of years into the future.659

There is often a trade-off between the resolution and horizon of forecast, e.g., a lower resolution660

forecast, like primary production will be at a maximum in the summer, is likely to be true much661

further into the future than a higher resolution forecast. If we want to forecast the structure662

of ecological networks beyond the forecasting horizon of time-series based methods, we need663

forecasts of our predictive model’s inputs—a forecast of the distribution of both environmental664

conditions and the potential species pool across space (fig. 3).665

How can we validate a forecasting model?666

Often the purpose of building a forecasting model is to inform present action (Dietze et al.667

2018). Yet, the nature of forecasting—trying to predict the future—is that you can only know668

if a forecast is “right” once it is too late to change it. If we want to maximise the chance that669

reality falls within a forecasting model’s predictions, there are two directions to approach this670

problem: the first is to extend model validation techniques to a forecasting context, and the671

second is to attempt to maximise the amount of uncertainty in the forecast without compromising672

its resolution. Cross-validation (see How do we validate a predictive model?) can be used to673

test the efficacy of a forecasting model. Given a time-series of 𝑁 observations, a model can674

iteratively be trained on the first 𝑛 time-points of data, and the forecasting model’s accuracy can675

be evaluated on the remaining time-points it hasn’t “seen” (Bishop 2006). This enables us to676

understand both how much temporal data is required for a model to be robust, and also enables677
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us to explore the forecasting horizon of a process. Further, this approach can also be applied in678

the opposite temporal direction— if we have reliable data from the past, “hindcasting” can also679

be used to test a forecast’s robustness.680

However, these methods inevitably bump into a hard-limitation on what is feasible for a forecast-681

ing model. The future is uncertain. Any empirical time-series we use to validate a model was682

collected in past conditions that may not persist into the future. Any system we wish to forecast683

will undergo only one of many possible scenarios, yet we can only observe the realised outcome684

of the system under the scenario that actually unfolds. It is therefore impossible to assess the685

quality of a forecasting model in scenarios that remain hypothetical. If the goal is to maximise686

the probability that reality will fall within the forecast’s estimates, forecasts should incorporate687

as much uncertainty about the future scenario as possible—one way to do this is ensemble mod-688

elling (Parker 2013). However, as we increase the amount of uncertainty we incorporate into a689

forecasting model, the resolution of the forecast’s predictions could shrink (Lei and Whitaker690

2017), and therefore the modeller should be mindful of the trade-off between resolution and ac-691

curacy when developing any forecast. Finally, ensemble models are not guaranteed to give more692

accurate results: for example, Becker et al. (2020) noted that the ensemble model outperforms693

the best-in-class models, which should be taken as an indication that careful model building and694

selection is of the utmost importance when dealing with a problem as complex as the prediction695

of species interactions.696

Conclusion: why should we predict species interaction networks?697

Because we almost can, and because we definitely should.698

A better understanding of species interactions, and the networks they form, would help unify the699

fields of community, network, and spatial ecology; improve the quantification of the functional700

relationships between species (Dehling and Stouffer 2018; O’Connor et al. 2020); re-evaluate701

metacommunities in light of network structure (Guzman et al. 2019); and enable a new line of702

research into the biogeography of species interactions (Massol et al. 2017; Braga et al. 2019)703

which incorporates a synthesis of both Eltonian and Grinnellian niche (Gravel et al. 2019). Fur-704
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ther, the ability to reliably predict and forecast species interactions would inform conservation705

efforts for protecting species, communities, and ecosystems. Integration of species interactions706

into the assessment of vulnerability to climate change is a needed methodological advancement707

(Foden and Young 2016). International panels draw on models to establish scientific consen-708

sus (M. B. Araújo et al. 2019), and they can be improved through more effective prediction of709

species distributions and interactions (Syfert et al. 2014). Further, recent studies argue for a shift710

in focus from species to interaction networks for biodiversity conservation to better understand711

ecosystem processes (Harvey et al. 2017).712

We should invest in network prediction because the right conditions to do so reliably and rapidly713

are beginning to emerge. Given the possible benefits to a variety of ecological disciplines that714

would result from an increased ability to predict networks, we feel strongly that the research715

agenda we outline here should be picked up by the community. Although novel technologies716

are bringing massive amounts of data to some parts of ecology (primarily environmental DNA717

and remote sensing, but now more commonly image analysis and bioacoustics), it is even more718

important to be intentional about reconciling data. This involves not only the work of under-719

standing the processes encoded within data, but also the groundwork of developing pipelines720

to bridge the ever-expanding gap between “high-throughput” and “low-throughput” sampling721

methods. An overall increase in the volume of data will not result in an increase of our predic-722

tive capacity as long as this data increase is limited to specific aspects of the problem. In the723

areas we highlight in fig. 2, many data steps are still limiting: documenting empirical interac-724

tions is natural history work that doesn’t lend itself to systematic automation; expert knowledge725

is by design a social process that may be slightly accelerated by text mining and natural language726

processing (but is not yet, or not routinely or at scale). These limitations are affecting our ability727

to reconstruct networks.728

But the tools to which we feed these data, incomplete as they may be, are gradually getting bet-729

ter; that is, they can do predictions faster, they handle uncertainty and propagate it well, and they730

can accommodate data volumes that are lower than we may expect (Pichler et al. 2020). It is731

clear attempting to predict the structure of ecological networks at any scale is a methodological732

and ecological challenge; yet it will result in qualitative changes in our understanding of com-733
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plex adaptive systems, as well as changes to our ability to leverage information about network734

structure for conservation decision. It is perhaps even more important to forecast the structure735

of ecological networks because it is commonly neglected as a facet of biodiversity that can (and736

should) be managed. In fact, none of the Aichi targets mention biostructure or its protection,737

despite this being recognised as an important task (McCann 2007), either implicitly or explicitly.738

Being able to generate reliable datasets on networks in space or time will make this information739

more actionable.740
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Figure 1: Proof-of-Concept: An empirical metaweb (from Hadfield et al. 2014), i.e. a list of
known possible interactions within a species pool, is converted into latent features using prob-
abilistic PCA, then used to train a deep neural network to predict species interactions. Panels
A and B represent, respectively, the ROC curve and the precision-recall curve, with the best
classifier (according to Youden’s J) represented by a black dot. The expected performance of a
neutral “random-guessing” classifier is shown with a dashed line. Panel C shows the imputed
using t-distributed stochastic neighbour embedding (tSNE), and the colours of nodes are the
cluster to which they are assigned based on a 𝑘-means clustering of the tSNE output. Empirical
interactions are shown in purple, and imputed interactions in grey.
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Figure 2: A conceptual roadmap highlighting key areas for the prediction of ecological networks.
Starting with the input of data from multiple sources, followed by a modelling framework for
ecological networks and the landscape, which are then ultimately combined to allow for the
prediction of spatially explicit networks.
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Figure 3: The nested nature of developing predictive and forecasting models, showcases the
forward problem and how this relies on a hierarchical structure of the modelling process. The
choice of a specific modelling technique and framework, as well as the data retained to be part
of this model, proceeds directly from our assumptions about which ecological mechanisms are
important in shaping both extant and future data.
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