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1. The prediction of species interactions is gaining momentum as a way to circumvent limitations in

data volume. Yet, ecological networks are challenging to predict because they are typically small and

sparse. Dealing with extreme class imbalance is a challenge for most binary classifiers, and there are

currently no guidelines as to how predictive models can be trained for this specific problem.

2. Using simple mathematical arguments and numerical experiments in which a variety of classifiers

(for supervised learning) are trained on simulated networks, we develop a series of guidelines related

to the choice of measures to use for model selection, and the ways to assemble the training dataset.

3. Neither classifier accuracy nor the area under the receiver operating characteristic curve

(ROC-AUC) are informative measures for the performance of interaction prediction. The area under

the precision-recall curve (PR-AUC) is a fairer assessment of performance. In some cases, even

standard measures can lead to selecting a more biased classifier because the effect of connectance is

strong. The amount of correction to apply to the training dataset depends on network connectance,

on the measure to be optimized, and only weakly on the classifier.

4. These results reveal that training machines to predict networks is a challenging task, and that in

virtually all cases, the composition of the training set needs to be fine-tuned before performing the

actual training. We discuss these consequences in the context of the low volume of data.
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Species interactions, forming ecological networks, are a backbone for key ecological and evolutionary1

processes; yet enumerating all of the interactions between 𝑆 species is a daunting task, as it scales with 𝑆2,2

i.e. the squared species richness (Martinez, 1992). Recent contributions to the field of ecological network3

prediction (Becker et al., 2022; Pichler et al., 2020; Strydom et al., 2021) highlight that although4

interactions can be predicted by adding ecologically relevant information (in the form of, e.g. traits), we do5

not have robust guidelines as to how the predictive ability of models recommending species interactions6

should be evaluated, nor about how these models should be trained. Here, by relying on simple7

derivations and a series of simulations, we formulate a number of such guidelines, specifically for the case8

of binary classifiers derived from thresholded values. Specifically, we conduct an investigation of the9

models in terms of their skill (ability to make the right prediction), bias (trends towards systematically10

over-predicting one class), class imbalance (the relative number of cases representing interactions), and11

show how these effects interact. We conclude on the fact that models with the best interaction-scale12

predictive score do not necessarily result in the most accurate representation of the true network.13

The prediction of ecological interactions shares conceptual and methodological issues with two fields in14

biology: species distribution modelling (SDMs), and genomics. SDMs suffers from issues affecting15

interactions prediction, namely low prevalence (due to sparsity of observations/interactions) and data16

aggregation (due to bias in sampling some locations/species). An important challenge lies in the fact that17

the best measure to quantify the performance of a model is not necessarilly a point of consensus (these18

methods, their interpretation, and the way they are measured, are covered in depth in the next section). In19

previous work, Allouche et al. (2006) suggested that Cohen’s 𝜅 agreement score (𝜅 thereafter) was a better20

test of model performance than the True Skill Statistic (TSS; which we refer to as Youden’s informedness21

thereafter); these conclusions were later criticized by Somodi et al. (2017), who emphasized that22

informedness is affected both by prevalence and bias. Although this work offers recommendations about23

the comparison of models, it doesn’t establishes baselines or good practices for training on imbalanced24

ecological data, or ways to remedy the imbalance. Steen et al. (2021) show that, when applying spatial25

thinning (artificially re-balancing observation data in space to avoid artifacts due to auto-correlation), the26

best approach to train ML-based SDMs varies according to the balancing of the dataset, and the evaluation27

measures used; there is no single “recipe” that is guaranteed to give the best model. By contrast to28

networks, SDMs have the advantage of being able to both thin datasets to remove some of the sampling29

bias (e.g. Inman et al., 2021), but also to create pseudo-absences to inflate the number of supposed30



negatives in the dataset (e.g. Iturbide et al., 2015). These powerful ways to remove data bias often have no31

analogue in networks, removing one potential tool from our methodological toolkit, and making the task32

of network prediction through classification potentially more demanding, and more prone to underlying33

data biases.34

An immense body of research on machine learning application to life sciences is focused on genomics35

(which has very specific challenges, see a recent discussion by Whalen et al., 2021); this sub-field has36

generated recommendations that do not necessarily match the current best-practices for SDMs, and37

therefore hint at the importance of domain-specific guidelines. Chicco & Jurman (2020) suggest using38

Matthews correlation coefficient (MCC) over 𝐹1, as a protection against over-inflation of predicted results;39

Delgado & Tibau (2019) advocate against the use of Cohen’s 𝜅, again in favor of MCC, as the relative40

nature of 𝜅 means that a worse classifier can be picked over a better one; similarly, Boughorbel et al.41

(2017) recommend MCC over other measures of performance for imbalanced data, as it has more42

desirable statistical properties. More recently, Chicco et al. (2021) temper the apparent supremacy of the43

MCC, by suggesting it should be replaced by Youden’s informedness (also known as 𝐽, bookmaker’s44

accuracy, and the True-Skill Statistic) when the imbalance in the dataset may not be representative of the45

actual imbalance. In a way, the measures themselves need not be a strong focus for network prediction, as46

they are routinely used in other field; the discipline-specific question we seek to address is: ‘which metric47

should be employed when predicting networks, and how to optimize it?’.48

Species interaction networks are often under-sampled (Jordano, 2016a, 2016b), and this under-sampling is49

structured taxonomically (Beauchesne et al., 2016), structurally (de Aguiar et al., 2019) and spatially50

(Poisot, Bergeron, et al., 2021; Wood et al., 2015). As a consequence, networks suffer from data51

deficiencies both within and between datasets. This implies that the comparison of classifiers across52

space, when undersampling varies locally (see e.g. McLeod et al., 2021) is non-trivial. Furthermore, the53

baseline value of classifiers performance measures under various conditions of skill, bias, and prevalence,54

has to be identified to allow researchers to evaluate whether their interaction prediction model is indeed55

learning. Taken together, these considerations highlight three specific issues for ecological networks.56

First, what values of performance measures are indicative of a classifier with no skill? This is particularly57

important as it can evaluate whether low prevalence can lull us into a false sense of predictive accuracy.58

Second, independently of the question of model evaluation, is low prevalence an issue for training or59

testing, and can we remedy it? Finally, because the low amount of data on interaction makes a lot of60
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imbalance correction methods (see e.g. Branco et al., 2015) hard to apply, which measures of model61

performance can be optimized by sacrificing least amount of positive interaction data?62

A preliminary question is to examin the baseline performance of these measures, i.e. the values they63

would take on hypothetical networks based on a classifier that has no-skill. It may sound counter-intuitive64

to care so deeply about how good a classifier with no-skill is, as by definition, is has no skill. The necessity65

of this exercise has its roots in the paradox of accuracy: when the desired class (“two species interact”) is66

rare, a model that gets less ecologically performant by only predicting the opposite class (“these two67

species do not interact”) sees its accuracy increase; because most of the guesses have “these two species do68

not interact” as a correct answer, a model that never predicts interactions would be right an overwhelming69

majority of the time; it would also be utterly useless. Herein lies the core challenge of predicting species70

interactions: the extreme imbalance between classes makes the training of predictive models difficult, and71

their validation even more so as we do not reliably know which negatives are true. The connectance (the72

proportion of realized interactions, usually the number of interactions divided by the number of species73

pairs) of empirical networks is usually well under 20%, with larger networks having a lower connectance74

(MacDonald et al., 2020), and therefore being increasingly difficult to predict.75

A primer on binary classifier evaluation76

Binary classifiers, which it to say, machine learning algorithms whose answer is a binary value, are usually77

assessed by measuring properties of their confusion matrix, i.e. the contingency table reporting true/false78

positive/negative hits. A confusion matrix is laid out as79

⎛
⎜
⎜
⎝

tp fp

fn tn

⎞
⎟
⎟
⎠

.

In this matrix, tp is the number of times the model predicts an interaction that exists in the network (true80

positive), fp is the number of times the model predicts an interaction that does not exist in the network81

(false positive), fn is the number of times the model fails to predict an interaction that actually exists in the82

network (false negatives), and tn is the number of times the model correctly predicts that an interaction83

does not exist (true negatives). From these values, we can derive a number of measures of model84
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performance (see Strydom et al., 2021 for a review of their interpretation in the context of networks). At a85

coarse scale, a classifier is accurate when the trace of the matrix divided by the sum of the matrix is close86

to 1, with other measures informing us on how the predictions fail.87

A lot of binary classifiers are built by using a regressor (whose task is to guess the value of the interaction,88

and can therefore return a value considered to be a pseudo-probability); in this case, the optimal value89

below which predictions are assumed to be negative (i.e. the interaction does not exist) can be determined90

by picking a threshold maximizing some value on the ROC or the PR curve. The area under these curves91

(ROC-AUC and PR-AUC henceforth) give ideas on the overall goodness of the classifier, and the ideal92

threshold is the point on these curves that minimizes the tradeoff represented in these curves. Saito &93

Rehmsmeier (2015) established that the ROC-AUC is biased towards over-estimating performance for94

imbalanced data; on the contrary, the PR-AUC is able to identify classifiers that are less able to detect95

positive interactions correctly, with the additional advantage of having a baseline value equal to96

prevalence. Therefore, it is important to assess whether these two measures return different results when97

applied to ecological network prediction. The ROC curve is defined by the false positive rate on the 𝑥 axis,98

and the true positive rate on the 𝑦 axis, and the PR curve is defined by the true positive rate on the 𝑥 axis,99

and the positive predictive value on the 𝑦 axis.100

There is an immense diversity of measures to evaluate the performance of classification tasks (Ferri et al.,101

2009). Here we will focus on five of them with high relevance for imbalanced learning (He & Ma, 2013).102

The choice of metrics with relevance to class-imbalanced problems is fundamental, because as Japkowicz103

(2013) unambiguously concluded, “relatively robust procedures used for unskewed data can break down104

miserably when the data is skewed”. Following Japkowicz (2013), we focus on two ranking metrics (the105

areas under the Receiver Operating Characteristic and Precision Recall curves), and three threshold106

metrics (𝜅, informedness, and MCC; we will briefly discuss 𝐹1 but show early on that it has undesirable107

properties).108

The 𝜅 measure (Landis & Koch, 1977) establishes the extent to which two observers (the network and the109

prediction) agree, and is measured as110

2 𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝
(𝑡𝑝 + 𝑓𝑝) × (𝑓𝑝 + 𝑡𝑛) + (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)

.

Informedness (Youden, 1950) (also known as bookmaker informedness or the True Skill Statistic) is111
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TPR + TNR − 1, where TPR = 𝑡𝑝∕(𝑡𝑝 + 𝑓𝑛) and TNR = 𝑡𝑛∕(𝑡𝑛 + 𝑓𝑝). Informedness can be used to find112

the optimal cutpoint in thresholding analyses (Schisterman et al., 2005); indeed, the maximal113

informedness corresponds to the point on the ROC curve that is closest to the perfect classifier point. The114

formula for informedness is115

𝑡𝑝
𝑡𝑝 + 𝑓𝑛 + 𝑡𝑛

𝑡𝑛 + 𝑓𝑝 − 1 .

The MCC is defined as116

𝑡𝑝 × 𝑡𝑛 − 𝑓𝑛 × 𝑓𝑝
√
(𝑡𝑝 + 𝑓𝑝) × (𝑡𝑝 + 𝑓𝑛) × (𝑡𝑛 + 𝑓𝑝) × (𝑡𝑛 + 𝑓𝑛)

.

Finally, 𝐹1 is the harmonic mean of precision (the chance that interaction was correctly detected as such)117

and sensitivity (the ability to correctly classify interactions), and is defined as118

2 𝑡𝑝
2 × 𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 .

One noteworthy fact is that 𝐹1 and MCC have ties to the PR curve (being close to the expected PR-AUC),119

and that informedness has ties to the ROC curve (whereby the threshold maximizing informedness is also120

the point of maximal inflection on the ROC curve). One important difference between ROC and PR is that121

the later does not prominently account for the size of the true negative compartments: in short, it is more122

sensitive to the correct positive predictions. In a context of strong imbalance, PR-AUC is therefore a more123

stringent test of model performance.124

Baseline values for the threshold metrics125

In this section, we will assume a network with connectance equal to a scalar 𝜌, i.e. having 𝜌𝑆2 interactions126

(where 𝑆 is the species richness), and (1 − 𝜌)𝑆2 non-interactions. Therefore, the vector describing the true127

state of the network (assumed to be an unweighted, directed network) is a column vector 𝐨𝑇 = [𝜌, (1 − 𝜌)]128

(we can safely drop the 𝑆2 terms, as we will work on the confusion matrix, which ends up expressing129

relative values). We will apply skill and bias to this matrix, and measure how a selection of performance130

metrics respond to changes in these values, in order to assess their suitability for model evaluation.131
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Confusion matrix with skill and bias132

In order to write the values of the confusion matrix for a hypothetical classifier, we need to define two133

characteristics: its skill, and its bias. Skill, here, refers to the propensity of the classifier to get the correct134

answer (i.e. to assign interactions where they are, and to not assign them where they are not). A no-skill135

classifier guesses at random, i.e. it will guess interactions with a probability 𝜌. The predictions of a no-skill136

classifier can be expressed as a row vector 𝐩𝑇 = [𝜌, (1 − 𝜌)]. The confusion matrix𝐌 for a no-skill137

classifier is given by the element-wise (Hadamard, outer) product of these vectors 𝐨⊙ 𝐩, i.e.138

𝐌 =
⎛
⎜
⎜
⎝

𝜌2 𝜌(1 − 𝜌)

(1 − 𝜌)𝜌 (1 − 𝜌)2

⎞
⎟
⎟
⎠

.

In order to regulate the skill of this classifier, we can define a skill matrix 𝐒 with diagonal elements equal139

to 𝑠, and off-diagonal elements equal to (1 − 𝑠), which allows to regulate how many predictions are wrong,140

under the assumption that the bias is the same (i.e. the classifier is as likely to make a false positive or a141

false negative). The skill-adjusted confusion matrix is𝐌⊙ 𝐒, i.e.142

⎛
⎜
⎜
⎝

𝜌2 𝜌(1 − 𝜌)

(1 − 𝜌)𝜌 (1 − 𝜌)2

⎞
⎟
⎟
⎠

⊙
⎛
⎜
⎜
⎝

𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠

⎞
⎟
⎟
⎠

.

When 𝑠 = 0, Tr(𝐌) = 0 (the classifier is always wrong), when 𝑠 = 0.5, the classifier is no-skill and guesses143

at random, and when 𝑠 = 1, the classifier is perfect.144

The second element we can adjust in this hypothetical classifier is its bias, specifically its tendency to145

over-predict interactions. Like above, we can do so by defining a bias matrix 𝐁, where interactions are146

over-predicted with probability 𝑏, and express the final classifier confusion matrix as𝐌⊙ 𝐒⊙ 𝐁, i.e.147

⎛
⎜
⎜
⎝

𝜌2 𝜌(1 − 𝜌)

(1 − 𝜌)𝜌 (1 − 𝜌)2

⎞
⎟
⎟
⎠

⊙
⎛
⎜
⎜
⎝

𝑠 (1 − 𝑠)

(1 − 𝑠) 𝑠

⎞
⎟
⎟
⎠

⊙
⎛
⎜
⎜
⎝

𝑏 𝑏

(1 − 𝑏) (1 − 𝑏)

⎞
⎟
⎟
⎠

.

The final expression for the confusion matrix in which we can regulate the skill and the bias is148
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𝐂 =
⎛
⎜
⎜
⎝

𝑠 × 𝑏 × 𝜌2 (1 − 𝑠) × 𝑏 × 𝜌(1 − 𝜌)

(1 − 𝑠) × (1 − 𝑏) × (1 − 𝜌)𝜌 𝑠 × (1 − 𝑏) × (1 − 𝜌)2

⎞
⎟
⎟
⎠

.

In all further simulations, the confusion matrix 𝐂 is transformed so that it sums to unity, i.e. the entries149

are the proportions of guesses.150

What are the baseline values of performance measures?151

In this section, we will change the values of 𝑏, 𝑠, and 𝜌, and report how the main measures discussed in152

the introduction (MCC, 𝐹1, 𝜅, and informedness) respond. Before we do so, it is important to explain why153

we will not focus on accuracy too much. Accuracy is the number of correct predictions (Tr(𝐂)) divided by154

the sum of the confusion matrix. For a no-skill, no-bias classifier, accuracy is equal to 𝜌2 + (1 − 𝜌)2; for155

𝜌 = 0.05, this is ≈ 0.90, and for 𝜌 = 0.01, this is equal to ≈ 0.98. In other words, the values of accuracy are156

high enough to be uninformative (for 𝜌 small, 𝜌2 ≪ (1 − 𝜌)2). More concerning is the fact that introducing157

bias changes the response of accuracy in unexpected ways. Assuming a no-skill classifier, the numerator158

of accuracy becomes 𝑏𝜌2 + (1− 𝑏)(1 − 𝜌)2, which increases when 𝑏 is low, which specifically means that at159

equal skill, a classifier that under-predicts interactions will have higher accuracy than an un-biased160

classifier (because the value of accuracy is dominated by the size of tn, which will increase). These issues161

are absent from balanced accuracy, but should nevertheless lead us to not report accuracy as the primary162

measure of network prediction success; moving forward, we will focus on other measures.163

In order to examine how MCC, 𝐹1, 𝜅, and informedness change w.r.t. the imbalance, skill, and bias, we164

performed a grid exploration of the values of logit(𝑠) and logit(𝑏) linearly from −10 to 10; logit(𝑥) = −10165

means that 𝑥 is essentially 0, and logit(𝑥) = 10means it is essentially 1 – this choice was motivated by the166

fact that most responses are non-linear with regards to bias and skill. The values or 𝜌 were taken linearly167

in ]0, 0.5], which is within the range of connectance for species interaction networks. Note that at this168

point, there is no network model to speak of; the confusion matrix we discuss can be obtained for any169

classification task. Based on the previous discussion, the desirable properties for a measure of classifier170

success should be: an increase with classifier skill, especially at low bias; a hump-shaped response to bias,171

especially at high skill, and ideally centered around logit(𝑏) = 0; an increase with prevalence up until172

equiprevalence is reached.173
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[Figure 1 about here.]174

In fig. 1, we show that none of the four measures satisfy all the considerations at once: 𝐹1 increases with175

skill, and increases monotonously with bias; this is because 𝐹1 does not account for true negatives, and the176

increase in positive detection masks the over-prediction of interactions. Informedness varies with skill,177

reaching 0 for a no-skill classifier, but is entirely unsensitive to bias. Both MCC and 𝜅 have the same178

behavior, whereby they increase with skill. 𝜅 peaks at increasing values of bias for increasing skill, i.e. is179

likely to lead to the selection of a classifier that over-predicts interactions. By contract, MCC peaks at the180

same value, regardless of skill, but this value is not logit(𝑏) = 0: unless at very high classifier skill, MCC181

risks leading to a model that over-predicts interactions. In fig. 2, we show that all measures except 𝐹1 give182

a value of 0 for a no-skill classifier, and are forced towars their correct maximal value when skill changes183

(i.e. a more connected networks will have higher values for a skilled classifierd, and lower values for a184

classifier making mostly mistakes).185

[Figure 2 about here.]186

These two analyses point to the following recommendations: MCC is indeed more appropriate than 𝜅, as187

although sensitive to bias, it is sensitive in a consistent way. Informedness is appropriate at discriminating188

between different skills, but confounded by bias. As both of these measures bring valuable information on189

the model behavior, we will retain them for future analyses. 𝐹1 is increasing with bias, and should not be190

prioritized to evalue the performance of the model. The discussion of sensitivity to bias should come with191

a domain-specific caveat: although it is likely that interactions documented in ecological networks are192

correct, a lot of non-interactions are simply unobserved; as predictive models are used for data-inflation193

(i.e. the prediction of new interactions), it is not necessarily a bad thing in practice to select models that194

predict more interactions than the original dataset, because the original dataset misses some interactions.195

Furthermore, the weight of positive interactions could be adjusted if some information about the extent of196

undersampling exists (e.g. Branco et al., 2015). In a recent large-scale imputation of interactions in the197

mammal-virus networks, Poisot, Ouellet, et al. (2021) for example estimated that 93% of interactions are198

yet to be documented.199
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Numerical experiments on training strategy200

In the following section, we will generate random bipartite networks, and train four binary classifiers (as201

well as an ensemble model using the sum of ranged outputs from the component models) on 50% of the202

interaction data. In practice, testing usually uses 70% of the total data; for ecological networks, where203

interactions are sparse and the number of species is low, this may not be the best solution, as the testing204

set becomes constrained not by the proportion of interactions, but by their number. Preliminary205

experiments using different splits revealed no qualitative change in the results. Networks are generated by206

picking a random infectiousness trait 𝑣𝑖 for 100 species (from a beta distribution 𝐵(𝛼 = 6, 𝛽 = 8)207

distribution), and a resistance trait ℎ𝑗 for 100 species (from 𝐵(𝛼 = 2, 𝛽 = 8) distribution). There is an208

interaction between 𝑖 and 𝑗 when 𝑣𝑖 − 𝜉∕2 ≤ ℎ𝑗 ≤ 𝑣𝑖 + 𝜉∕2, where 𝜉 is a constant regulating the209

connectance of the network (visual exploration of the parameters show that there is an almost 1:1210

relationship between 𝜉 and connectance), and varies uniformly in [0.05, 0.35]. This model gives fully211

interval networks that are close analogues to the bacteria–phage model of Weitz et al. (2005), with both a212

modular structure and a non-uniform degree distribution. This dataset is easy for almost any algorithm to213

learn: when trained with features [𝑣𝑖, ℎ𝑗, abs(𝑣𝑖, ℎ𝑗)]𝑇 to predict the interactions between 𝑖 and 𝑗, all four214

models presented below were able to reach almost perfect predictions all the time (data not presented215

here) – this is in part because the rule (there is maximum value of the distance between traits for which216

there is an interaction) is fixed for all interactions, and any method able to learn non-linear relationships217

should infer it without issues. In order to make the problem more difficult to solve, we use [𝑣𝑖, ℎ𝑗] as a218

feature vector (i.e. the traits on which the models are trained), and therefore the models will have to219

uncover that the rule for interaction is abs(𝑣𝑖, ℎ𝑗) ≤ 𝜉. The models therefore all have the following form,220

where 𝑖𝑖,𝑗 is an interaction from species 𝑖 to species 𝑗:221

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑖1,1

𝑖1,2

⋮

𝑖𝑚,𝑛−1

𝑖𝑚,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣1 ℎ1

𝑣1 ℎ2

⋮ ⋮

𝑣𝑚 ℎ𝑛−1

𝑣𝑚 ℎ𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The training sample is composed of a random pick of up to 50% of the 104 possible entries in the network,222
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i.e. 𝑛 = 5000. Out of these interactions, we pick a proportion 𝜈 (the training set balance) to be positive, so223

that the training set has 𝜈𝑛 interactions, and (1 − 𝜈)𝑛 non-interactions. We vary 𝜈 uniformly in ]0, 1[. This224

allows to evaluate how the measures of binary classification performance respond to artificially225

rebalanced dataset for a given network connectance. The rest of the dataset is used as a testing set, on226

which all further measures are calculated. Note that although the training set is balanced arbitrarily, the227

testing set is assembled so that it has the exact connectance of the entire network; this ensures that the228

model is evaluated under the class imbalance where the predictions will be made, which represents a229

more meaningful evaluation. Furthermore, to avoid artifacts due to different sizes of the training and230

testing set within a single network, the number of entries in both sets are equal. Note also that although231

the simulated networks are bipartite, the algorithms have no “knowledge” of the network structure, and232

simply look at pairs of species; therefore, the approach outlined here would also work for unipartite233

networks.234

The dataset used for numerical experiments is composed of a grid of 35 values of connectance (from 0.011235

to 0.5) and 35 values of 𝜈 (from 0.02 to 0.98); for each pair of values, 500 networks are generated and236

predicted. For each network, we train four machines: a trait-based k-NN (e.g. Desjardins-Proulx et al.,237

2017), a regression tree, a regression random forest, and a boosted regression tree; the later three methods238

are turned into classifiers using thresholding, which oftentimes provides better results than classification239

when faced with class imbalance (Hong et al., 2016). Following results from Pichler et al. (2020), linear240

models have not been considered (in any way, the relationship in the simulated networks is non-linear).241

The point of these numerical experiments is not to recommend the best model (this is likely242

problem-specific), but to highlight a series of recommendations that would work for supervised learning243

tasks. All models were taken from the MLJ.jl package (Blaom et al., 2020; Blaom & Vollmer, 2020) in Julia244

1.7 (Bezanson et al., 2017). All machines use the default parameterization; this is an obvious deviation245

from best practices, as the hyperparameters of any machine require training before its application on a real246

dataset. As we use 612500 such datasets, this would require over 2 millions unique instances of tweaking247

the hyperparameters, which is prohibitive from a computing time point of view. An important thing to248

keep in mind is that the problem we simulate has been designed to be simple to solve: we expect all249

machines with sensible default parameters to fare well — the results presented in the later sections show250

that this assumption is warranted, and we further checked that the models do not overfit by ensuring that251

there is never more than 5% of difference between the accuracy on the training and testing sets. All252
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machines return a quantitative prediction, usually (but not necessarily) in [0, 1], which is proportional253

(but not necessarily linearly) to the probability of an interaction between 𝑖 and 𝑗. The ROC-AUC and254

PR-AUC (and therefore the thresholds) can be measured by integrating over the domain of the values255

return by each machine, but in order to make the average-based ensemble model more meaningful, all256

predictions are expressed in [0, 1].257

In order to pick the best confusion matrix for a given trained machine, we performed a thresholding258

approach using 500 steps on predictions from the testing set, and picking the threshold that maximized259

Youden’s informedness. During the thresholding step, we measured the area under the receiver operating260

characteristic (ROC-AUC) and precision-recall (PR-AUC) curves, as measures of overall performance over261

the range of returned values. We report the ROC-AUC and PR-AUC, as well as a suite of other measures as262

introduced in the next section, for the best threshold. The ensemble model was generated by summing the263

predictions of all component models on the testing set (ranged in [0, 1]), then put through the same264

thresholding process. The complete code to run the simulations is available at 10.17605/OSF.IO/JKEWD.265

After the simulations were completed, we removed all runs (i.e. triples of model, 𝜉, and 𝜈) for which at266

least one of the following conditions was met: the accuracy was 0, the true positive or true negative rates267

were 0, the connectance was larger than 0.25. This removes both the obviously failed model runs, and the268

networks that are more densely connected compared to the connectance of empirical food webs (and are269

therefore less difficult to predict, being less imbalanced; preliminary analyses of data with a connectance270

larger than 0.3 revealed that all machines reached consistently high performance).271

Effect of training set balance on performance272

In fig. 3, we present the response of two thresholding measures (PR-AUC and ROC-AUC) and two ranking273

measures (Informedness and MCC) to a grid of 35 values of training set balance, and 35 values of274

connectance, for the four component models as well as the ensemble. ROC-AUC is always high, and does275

not vary with training set balance. On the other hand, PR-AUC shows very strong responses, increasing276

with training set balance. It is notable here that two classifiers that seemed to be performing well (Decision277

Tree and Random Forest) based on their MCC are not able to reach a high PR-AUC even at higher278

connectances. All models reached a higher performance on more connected networks, and using more279

balanced training sets. In all cases, informedness was extremely high, which is an expected consequence280
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of the fact that this is the value we optimized to determine the cutoff. MCC increased with training set281

balance, although this increase became less steep with increasing connectance. Three of the models (kNN,282

decision tree, and random forest) only increased their PR-AUC sharply when the training set was heavily283

imbalanced towards more interactions. Interestingly, the ensemble almost always outclassed its284

component models. For larger connectances (less difficult networks to predict, as they are more balanced),285

MCC and informedness stared decreasing when the training set bias got too close to one, suggesting that a286

training set balance of 0.5 may often be appropriate if these measures are the one to optimize.287

[Figure 3 about here.]288

Based on the results presented in fig. 3, it seems that informedness and ROC-AUC are not necessarily able289

to discriminate between good and bad classifiers (although this result may be an artifact for informedness,290

as it has been optimized when thresholding). On the other hand, MCC and PR-AUC show a strong291

response to training set balance, and may therefore be more useful at model comparison.292

Required amount of positives to get the best performance293

The previous results revealed that the measure of classification performance responds both to the bias in294

the training set and to the connectance of the network; from a practical point of view, assembling a295

training set requires one to withhold positive information, which in ecological networks are very scarce296

(and typically more valuable than negatives, on which there is a doubt). For this reason, across all values297

of connectance, we measured the training set balance that maximized a series of performance measures.298

When this value is high, the training set needs to skew more positive in order to get a performant model;299

when this value is about 0.5, the training set needs to be artificially balanced to optimize the model300

performance. These results are presented in fig. 4.301

[Figure 4 about here.]302

The more “optimistic” measures (ROC-AUC and informedness) required a biasing of the dataset from303

about 0.4 to 0.75 to be maximized, with the amount of bias required decreasing only slightly with the304

connectance of the original network. MCC and PR-AUC required values of training set balance from 0.75305

to almost 1 to be optimized, which is in line with the results of the previous section, i.e. they are more306
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stringent tests of model performance. These results suggest that learning from a dataset with very low307

connectance can be a different task than for more connected networks: it becomes increasingly important308

to capture the mechanisms that make an interaction exist, and therefore having a slightly more biased309

training dataset might be beneficial. As connectance increases, the need for biased training sets is less310

prominent, as learning the rules for which interactions do not exist starts gaining importance.311

[Figure 5 about here.]312

When trained at their optimal training set balance, connectance still had a significant impact on the313

performance of some machines (fig. 5). Notably, Decision Tree, and k-NN, as well as Random forest to a314

lower extent, had low values of PR-AUC. In all cases, the Boosted Regression Tree was reaching very good315

predictions (especially for connectances larger than 0.1), and the ensemble was almost always scoring316

perfectly. This suggests that all the models are biased in different ways, and that the averaging in the317

ensemble is able to correct these biases. We do not expect this last result to have any generality, and318

provide a discussion of a recent example in which the ensemble was performing worse than its319

components models.320

Do better classification accuracy result in more realistic networks?321

In this last section, we generate a network using the same model as before, with 𝑆1, 𝑆2 = 50, 80 species, a322

connectance of ≈ 0.16 (𝜉 = 0.19), and a training set balance of 0.5, as fig. 4 suggests this is the optimal323

training set balance for this range of connectance. The prediction made on the complete dataset is324

presented in fig. 6.325

[Figure 6 about here.]326

The trained models were then thresholded (again by optimising informedness), and their predictions327

transformed back into networks for analysis; specifically, we measured the connectance, nestedness [𝜂;328

Bastolla et al. (2009)], modularity [𝑄; Barber (2007)], asymmetry [𝐴; Delmas et al. (2018)], and Jaccard329

network dissimilarity (Canard et al., 2014). This process was repeated 250 times, and the results are330

presented in tbl. 1. The k-NN model is an interesting instance here: it produces the network that looks the331
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most like the original dataset, despite having the lowest PR-AUC, suggesting it hits high recall at the cost332

of low precision. The ensemble was able to reach a very high PR-AUC (and a very high ROC-AUC), which333

translated into more accurate reconstructions of the structure of the network (with the exception of334

modulairty, which is underestimated by 0.03). This result bears elaborating. Measures of model335

performance capture how much of the interactions and non-interactions are correctly identified. As long336

as these predictions are not perfect, some interactions will be predicted at the “wrong” position in the337

network; these measures cannot describe the structural effect of these mistakes. On the other hand,338

measures of network structure can have the same value with interactions that fall at drastically different339

positions; this is in part because a lot of these measures covary with connectance, and in part because as340

long as these values are not 0 or their respective maximum, there is a large number of network341

configurations that can have the same value. That ROC-AUC is consistently larger than PR-AUC may be a342

case of this measure masking models that are not, individually, strong predictors (Jeni et al., 2013). In this343

specif example, the combination of individually “adequate” models resulted in an extremely strong344

ensemble, suggesting that the correct prediction of interactions (as measured by MCC, Inf., ROC-AUC,345

and PR-AUC) and network properties is indeed a feasible task under appropriately hyper-parameterized346

models.347

Table 1: Values of four performance metrics, and five network structure metrics, for 500 independent
predictions similar to the ones presented in fig. 6. The values in bold indicate the best value for each column
(including ties). Because the values have been rounded, values of 1.0 for the ROC-AUC column indicate an
average ≥ 0.99.

Model MCC Inf.

ROC-

AUC

PR-

AUC Conn. 𝜂 𝑄 𝐴 Jaccard

Decision

tree

0.59 0.94 0.97 0.04 0.17 0.64 0.37 0.42 0.1

BRT 0.46 0.91 0.97 0.36 0.2 0.78 0.29 0.41 0.19

Random

Forest

0.72 0.98 0.99 0.1 0.16 0.61 0.38 0.42 0.06

k-NN 0.71 0.98 0.99 0.02 0.16 0.61 0.39 0.42 0.06

Ensemble 0.74 0.98 1.0 0.79 0.16 0.61 0.38 0.42 0.06

Data 0.16 0.56 0.41 0.42 0.0
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Guidelines for the assessment of network predictive models348

We establish that due to the low prevalence of interactions, even poor classifiers applied to food web data349

will reach a high accuracy; this is because the measure is dominated by the accidentally correct350

predictions of negatives. On simulated confusion matrices with ranges of imbalance that are credible for351

ecological networks, MCC had the most desirable behavior, and informedness is a linear measure of352

classifier skill. By performing simulations with four models and an ensemble, we show that informedness353

and ROC-AUC are consistently high on network data, whereas MCC and PR-AUC are more accurate354

measures of the effective performance of the classifier. Finally, by measuring the structure of predicted355

networks, we highlight an interesting paradox: the models with the best performance measures are not356

necessarilly the models with the closest reconstructed network structure. We discuss these results in the357

context of establishing guidelines for the prediction of ecological interactions.358

It is noteworthy that the ensemble model was systematically better than the component models. We do359

not expect that ensembles will always be better than single models. Networks with different structures360

than the one we simulated here may respond in different ways, especially if the rules are fuzzier than the361

simple rule we used here. In a recent multi-model comparison involving supervised and unsupervised362

learning, Becker et al. (2022) found that the ensemble was not the best model, and was specifically363

under-performing compared to models using biological traits. This may be because the dataset of Becker364

et al. (2022) was known to be under-sampled, and so the network alone contained less information than365

the combination of the network and species traits. There is no general conclusion to draw from either366

these results or ours, besides reinforcing the need to be pragmatic about which models should be included367

in the ensemble, and whether to use an ensemble at all. In a sense, the surprising performance of the368

ensemble model should form the basis of the first broad recommendation: optimal training set balance369

and its interaction with connectance and the specific binary classifier used is, in a sense, an370

hyperparameter that should be assessed following the approach outlined in this manuscript. The371

distribution of results in fig. 4 and fig. 5 show that there are variations around the trend, and multiple372

models should probably be trained on their “optimal” training/testing set, as opposed to the same ones.373

The results presented here highlight an interesting paradox: although the k-NN model was ultimately able374

to get a correct estimate of network structure (see tbl. 1 and fig. 6), it ultimately remains a poor classifier,375

as evidenced by its low PR-AUC. This suggests that the goal of predicting interactions and predicting376
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networksmay not always be solvable in the same way – of course a perfect classifier of interactions would377

make a perfect network prediction; indeed, the best scoring predictor of interactions (the ensemble model)378

had the best prediction of network structure. The tasks of predicting networks structure and of predicting379

interactions within networks are essentially two different ones. For some applications (e.g. comparison of380

network structure across gradients), one may care more about a robust estimate of the structure, at the cost381

at putting some interactions at the wrong place. For other applications (e.g. identifying pairs of interacting382

species), one may conversely care more about getting as many pairs right, even though the mistakes383

accumulate in the form of a slightly worse estimate of network structure. How these two approaches can384

be reconciled is something to evaluate on a case-by-case basis, especially since there is no guarantee that385

an ensemble model will always be the most precise one. Despite this apparent tension at the heart of the386

predictive exercise, we can use the results presented here to suggest a number of guidelines.387

First, because we have more trust in reported interactions than in reported absences of interactions (which388

are overwhelmingly pseudo-absences), we can draw on previous literature to recommend informedness as389

a measure to decide on a threshold for binary classification (Chicco et al., 2021); this being said, because390

informedness is insensitive to bias (although it is a linear measure of skill), the overall model performance391

is better evaluated through the use of MCC (figs. 4, 5). Because 𝐹1 is monotonously sensitive to classifier392

bias (fig. 1) and network connectance (fig. 2), MCC should be prefered as a measure of model evaluation393

and comparison. When dealing with multiple models, we therefore suggest to find the optimal threshold394

using informedness, and to pick the best model using MCC (assuming one does not want to use an395

ensemble model).396

Second, accuracy alone should not be the main measure of model performance, but rather an expectation397

of how well the model should behave given the class balance in the set on which predictions are made;398

this is because, as derived earlier, the expected accuracy for a no-skill no-bias classifier is 𝜌2 + (1 − 𝜌)2399

(where 𝜌 is the class balance), which will most often be large. This pitfall is notably illustrated in a recent400

food-web model (Caron et al., 2022) wherein the authors, using a training set of 𝑛 = 104 with only 100401

positive interactions (representing 0.1% of the total interactions), reached a good accuracy. Reporting a402

good accuracy is not informative, especially when accuracy isn’t (i) compared to the baseline expected403

value under the given class balance, and (ii) interpreted in the context of a measure that is not sensitive to404

the chance prediction of many negatives (like MCC).405

Third, because the PR-AUC responds more to network connectance (fig. 5) and training set imbalance406
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(fig. 4) than ROC-AUC, it should be used as a measure of model performance over the ROC-AUC. This is407

not to say that ROC-AUC should be discarded (in fact, a low ROC-AUC is undoubtedly a sign of an issue408

with the model), but that its interpretation should be guided by the PR-AUC value. Specifically, a high409

ROC-AUC is not informative, as it can be associated to a low PR-AUC (see e.g. Random Forest in tbl. 1)410

This again echoes recommendations from other fields (Jeni et al., 2013; Saito & Rehmsmeier, 2015). We411

therefore expect to see high ROC-AUC values, and then to pick the model that maximizes the PR-AUC412

value. Taken together with the previous two guidelines, we strongly encourage to (i) ensure that accuracy413

and ROC-AUC are high (in the case of accuracy, higher than expected under no-skill no-bias situation),414

and (ii) to discuss the performance of the model in terms of the most discriminant measures, i.e. PR-AUC415

and MCC.416

Finally, network connectance (i.e. the empirical class imbalance) should inform the composition of the417

training and testing set, because it is an ecologically relevant value. In the approach outlined here, we treat418

the class imbalance of the training set as an hyper-parameter, but test the model on a set that has the same419

class imbalance as the actual dataset. This is an important distinction, as it ensure that the prediction420

environment matches the testing environment (as we cannot manipulate the connectance of the empirical421

dataset on which the predictions will be made), and so the values measured on the testing set (or validation422

set if the data volume allows one to exists) can be directly compared to the values for the actual prediction.423

A striking result from fig. 4 is that Informedness was almost always maximal at 50/50 balance (regardless424

of connectance), whereas MCC requiredmore positives to be maximized when connectance increases,425

matching the idea that it is a more stringent measure of performance. This has an important consequence426

in ecological networks, for which the pool of positive cases (interactions) to draw from is typically small:427

the most parsimonious measure (i.e. the one requiring to discard the least amount of interactions to train428

the model) will give the best validation potential, and in this light is very likely informedness [maximizing429

informedness is, in fact, the generally accepted default for imbalanced classification regardless of the430

problem domain; Schisterman et al. (2005)]. This last result further strengthens the assumption that the431

amount of bias is an hyper-parameter that must be fine-tuned, as using the wrong bias can lead to models432

with lower performance; for this reason, it makes sense to not train all models on the same433

training/testing set, but rather to optimize the set composition for each of them.434

One key element for real-life data that can make the prediction exercise more tractable is that some435

interactions can safely be assumed to be impossible; indeed, a lot of networks can be reasonably well436
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described using a stochastic block model (e.g. Xie et al., 2017). In ecological networks, this can be due to437

spatial constraints (Valdovinos, 2019), or to the long-standing knowledge that some links are “forbidden”438

due to traits (Olesen et al., 2011) or abundances (Canard et al., 2014). The matching rules (Olito & Fox,439

2015; Strona & Veech, 2017) can be incorporated in the model either by adding compatibility traits, or by440

only training the model on pairs of species that are not likely to be forbidden links. Knowledge of true441

negative interactions could be propagated in training/testing sets that have true negatives, and in this442

situation, it may be possible to use the more usual 70/30 split for training/testing folds as the need to443

protect against potential unbalance is lowered. Besides forbidden links, a real-life case that may arise is444

multi-interaction or multi-layer networks (Pilosof et al., 2017). These can be studied using the same445

general approach outlined here, either by assuming that pairs of species can interact in more than one way446

(wherein one would train a model for each type of interaction, based on the relevant predictors), or by447

assuming that pairs of species can only have one type of interaction (wherein this becomes a multi-label448

classification problem).449
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Figure 1: Consequences of changing the classifier skills (𝑠) and bias (𝑠) for a connectance 𝜌 = 0.15, on
𝐹1, informedness, MCC, and 𝜅. Accuracy increases with skill, but also increases when the bias tends
towards estimating fewer interactions (this follows from the derivations in the text, not shown in the figure).
Interestingly, 𝜅 responds as expected to skill (being negative whenever 𝑠 < 0.5), and peaks for values of
𝑏 ≈ 0.5; nevertheless, the value of bias for which 𝜅 is maximized in not 𝑏 = 0.5, but instead increases with
classifier skill. In other words, at equal skill, maximizing 𝜅 would lead to select amore biased classifier.
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Figure 2: As in fig. 1, consequences of changing connectance for different levels of classifier skill, assuming
no classifier bias. Informedness, 𝜅, and MCC do increase with connectance, but only when the classifier is
not no-skill; by way of contrast, a more connected network will give a higher 𝐹1 value even with a no-skill
classifier.
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Figure 3: Response of MCC, Informedness, ROC-AUC, and PR-AUC to changes in the training set balance
(on the 𝑥 axis) for a series of increasing connectances (color). All of these values approach 1 for a good
model, but should be lower when the prediction is more difficult. Informedness is consistently high, and
by contrast, MCC increases with additional training set balance. Across all models, training on a more
connected network is easier. ROC-AUC is consistently high, and therefore not properly able to separate
good from poor classifiers. On the other hand, PR-AUC responds to changes in the training set.
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Figure 4: Value of the optimal training set balance for the different models and measures evaluated here,
over a range of connectances. Informednesswas reliablymaximized for balanced training sets, and kept this
behavior across models. For other measures, larger connectances in the true network allowed lower biases
in the training set. In a large number of cases, “over-correcting” by having training sets with more than half
instances representing interactions would maximize the values of the model performance measures.
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Figure 5: When trained on their optimally biased training set, most models were able to maximize their
performance; this is not true when measuring PR-AUC for decision tree, k-NN, and to a lower extent RF.
The ensemble had a consistently high performance despite incorporating low-performing models.

29 of 24



Figure 6: Visualisation of the raw (un-thresholded) models predictions for one instance of a network
prediction problem (shown in the “Dataset” panel). Increasing the value of the 𝜉 parameter wouldmake the
diagonal structure “broader”, leading tomore interactions. A visual inspection of the results is important, as
it highlights how some models can “miss” parts of the network; by combining them in an ensemble, these
gaps compensate one another, and lead (in this case) to a better prediction.
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