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Abstract

Predicting the number of interactions that species in a food web will establish is an im-

portant task. These trophic interactions underlie many ecological and evolutionary processes,

ranging frombiomass �uxes, ecosystem stability, resilience to extinction, and resistance against

novel species. We investigate and compare several ways to predict the number of interactions

in food webs. We conclude that a simple beta-binomial model outperforms other models, with

the added desirable property of respecting biological constraints. We show how this simple

relationship gives rise to a predicted distribution of several quantities related to link number

in food webs, including the scaling of network structure with space, and the probability that a

network will be stable.

Introduction1

Community ecologists are fascinated by counting things. It is therefore no surprise that early food2

web research paid so much attention to counting species, counting trophic links, and uncovering3

the relationship that binds them – and it is undeniable that these inquiries kickstarted what is now4

one of themost rapidly growing �elds of ecology [1]. More species (S) alwaysmeansmore links (L);5

this scaling is universal and appears both in observed food webs and under purely neutral models6
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of food web structure [2]. In fact, these numbers underlie most measures used to describe food7

webs [3]. The structure of a food web, in turn, is almost always required to understand how the8

community functions, develops, and responds to changes [4,5], to the point where some authors9

suggested that describing food webs was a necessity for community ecology [6,7]. To this end, a10

�rst step is to come upwith an estimate for the number of existing trophic links, through sampling11

or otherwise. Although both L and S can be counted in nature, the measurement of links is orders12

of magnitude more di�cult than the observation of species [8,9]. As a result, we have far more13

information about values of S. In fact, the distribution of species richness across the world is14

probably the most frequently observed and modelled ecological phenomenon. Therefore, if we15

can predict L from S in an ecologically realistic way, we would be in a position to make �rst order16

approximations of food web structure at large scales, even under our current data-limited regime.17

Measures of food web structure react most strongly to a handful of important quantities. The �rst18

and most straightforward is L, the number of trophic links among species. This quantity can be19

large, especially in species-rich habitats, but it cannot be arbitrarily large. It is clear to any observer20

of nature that of all imaginable trophic links, only a fraction actually occur. If an ecological com-21

munity contains S species, then the maximum number of links in its food web is S2: a community22

of omnivorous cannibals. This leads to the second quantity: a ratio called connectance and de�ned23

by ecologists as Co = L∕S2. Connectance has become a fundamental quantity for nearly all other24

measures of food web structure and dynamics [10]. The third important quantity is another ratio:25

linkage density, LD = L∕S. This value represents the number of links added to the network for26

every additional species in the ecological system. A closely related quantity is LD × 2, which is the27

average degree: the average number of species with which any taxa is expected to interact, either28

as predator or prey. These quantities capture ecologically important aspects of a network, and all29

can be derived from the observation or prediction of L links among S species.30

Because L represents such a fundamental quantity, many predictive models have been considered31

over the years. Here we describe three popular approaches before describing our own proposed32

model. The link-species scaling (LSSL) [11] assumes that all networks have the same average degree;33
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that is, most species should have the same number of links. Links are modelled as the number of34

species times a constant:35

LLSSL = b × S (1)

with b ≈ 2. This model imagines that every species added to a community increases the number36

of links by two – for example, an animal which consumes one resource and is consumed by one37

predator. This model started to show its de�ciencies when data on larger food webs became avail-38

able: in these larger webs, L increased faster than a linear function of S. Perhaps then all networks39

have the same connectance [12]? In other words, a food web is always equally �lled, regardless of40

whether it has 5 or 5000 species. Under the so-called “constant connectance” model, the number41

of links is proportional to the richness squared,42

LCC = b × S2 , (2)

where b is a constant in ]0, 1[ representing the expected value of connectance. The assumption of43

a scaling exponent of 2 can be relaxed [12], so that L is not in direct proportion to the maximum44

number of links:45

LPL = b × Sa . (3)

This “power law”model can be parameterized inmany ways, including spatial scaling and species46

area relationships [13]. It is also a general case of the previous two models, encompassing both47

link-species scaling (a = 1, b ≈ 2) and the strict constant connectance (a = 2, 0 < b < 1) depend-48

ing on which parameters are �xed. Power laws are very �exible, and indeed this function matches49

empirical data well – so well that it is often treated as a “true” model which captures the scaling50

of link number with species richness [14–16], and from which we should draw ecological infer-51

ences about what shapes food webs. However, this approach is limited, because the parameters52
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of a power law relationship can arise from many mechanisms, and are di�cult to reason about53

ecologically.54

But the question of how informative parameters of a power law can be is moot. Indeed, both the55

general model and its variants share an important shortcoming: they cannot be used for predic-56

tion while remaining within the bounds set by ecological principles. This has two causes. First,57

models that are variations of L ≈ b × Sa have no constraints – with the exception of the “constant58

connectance” model, in which Lcc has a maximum value of S2. However, we know that the num-59

ber of links within a food web is both lower and upper bounded [12,17]: there can be no more60

than S2 links, and there can be no fewer than S − 1 links. This minimum of S − 1 holds for food61

webs in which all species interact – for example, a community of plants and herbivores where no62

plants are inedible and all herbivores must eat [12]. Numerous simple food webs could have this63

minimal number of links – for example, a linear food chain wherein each trophic level consists of64

a single species, each of which consumes only the species below it; or a grazing herbivore which65

feeds on every plant in a �eld. Thus the number of links is constrained by ecological principles66

to be between S − 1 and S2, something which no present model includes. Secondly, accurate pre-67

dictions of L from S are often di�cult because of how parameters are estimated. This is usually68

done using a Gaussian likelihood for L, often after log transformation of both L and S. While this69

approach ensures that predicted values of L are always positive, it does nothing to ensure that they70

stay below S2 and above S − 1. Thus a good model for L should meet these two needs: a bounded71

expression for the average number of links, as well as a bounded distribution for its likelihood.72

Here we suggest a new perspective for a model of L as a function of S which respects ecological73

bounds, and has a bounded distribution of the likelihood. We include the minimum constraint by74

modelling not the total number of links, but the number in excess of the minimum. We include75

the maximum constraint in a similar fashion to the constant connectance model described above,76

by modelling the proportion of �exible links which are realized in a community.77
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Interlude - deriving a process-based model for the number of78

links79

Based on the ecological constraints discussed earlier, we know that the number of links L is an80

integer such that S − 1 ≤ L ≤ S2. Because we know that there are at least S − 1 links, there can81

be at most S2 − (S − 1) links in excess of this quantity. The S − 1minimum links do not need to be82

modelled, because their existence is guaranteed as a pre-condition of observing the network. The83

question our model should address is therefore, howmany of these S2−(S−1) “�exible” links are84

actually present? A second key piece of information is that the presence of a link can be viewed85

as the outcome of a discrete stochastic event, with the alternative outcome that the link is absent.86

We assume that all of these �exible links have the same chance of being realized, which we call p.87

Then, if we aggregate across all possible species pairs, the expected number of links is88

LFL = p ×
[
S2 − (S − 1)

]
+ (S − 1) , (4)

wherep ∈ [0, 1]. Whenp = 1, L is at itsmaximum (S2), andwhenp = 0 it is at theminimumvalue89

(S − 1). We use the notation LFL to represent that our model considers the number of “�exible”90

links in a foodweb; that is, the number of links in excess of theminimumbut below themaximum.91

Because we assume that every �exible link is an independent stochastic event with only two out-92

comes, we can follow recent literature on probabilistic ecological networks [18] and represent93

them as independent Bernoulli trials with a probability of success p. This approach does not cap-94

ture ecological mechanisms known to act on food webs [19], but rather captures that any interac-95

tion is the outcome of many processes which can overall be considered probabilistic events [20].96

The assumption that �exible links can all be represented by Bernoulli events is an appropriate97

trade-o� between biological realism and parameterization requirements.98

Furthermore, the observation of L links in a foodweb represents an aggregation of S2−(S−1) such99

trials. If we then assume that p is a constant for all links in a particular food web, but may vary100
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between foodwebs (a strong assumptionwhichwe later show is actuallymore stringent thanwhat101

data suggest), we can model the distribution of links directly as a shifted beta-binomial variable:102

[L|S, �, �] =
(S2 − (S − 1)
L − (S − 1)

)B(L − (S − 1) + ��, S2 − L + (1 − �)�)
B(��, (1 − �)�)

(5)

Where B is the beta function, � is the average probability of a �exible link being realized (i.e. the103

average value ofp across networks in the dataset) and� is the concentration around this value. The104

support of this distribution is limited to only ecologically realistic values of L: it has no probability105

mass below S − 1 or above S2. This means that the problem of estimating values for � and � is106

reduced to �tting the univariate distribution described in eq. (5). For more detailed explanation of107

the model derivation, �tting, and comparison, see Experimental Procedures.108

In this paper we will compare our �exible links model to three previous models for L. We esti-109

mate parameters and compare the performance of all models using open data from the mangal.io110

networks database [21]. This online, open-access database collects published information on all111

kinds of ecological networks, including 255 food webs detailing interactions between consumers112

and resources [22]. We use these data to show how our �exible links model not only outperforms113

existing e�orts at predicting the number of links, but also has numerous desirable properties from114

which novel insights about the structure of food webs can be derived.115

Results and Discussion116

Flexible linksmodel �ts better andmakes a plausible range of predictions117
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Table 1: Comparison of the four di�erent models. We show Pareto-smoothed important sampling
values (PSIS-LOO) and their standard deviation. PSIS-LOO is similar to information critera in
that smaller values indicate better predictive performance. We also show expected log predictive
density (ELPD) di�erences to the maximum for all models, along with the standard error (SE) of
these di�erences.

Model eq. PSIS-LOO ∆ELPD SE∆ELPD

Flexible links 4 2520.5 ± 44.4 0 0

Power law [13] 3 2564.3 ± 46.6 -21.9 6.5

Constant [12] 2 2811.0 ± 68.3 -145.3 21.1

Link-species scaling [11] 1 39840.1 ± 2795.1 -18659.8 1381.7

When �t to the datasets archived on mangal.io, all four models �t without any problematic warn-118

ings (see Experimental Procedures), while our model for �exible links outperformed previous so-119

lutions to the problem of modelling L. The �exible links model, which we �t via a beta-binomial120

observation model, had the most favourable values of PSIS-LOO information criterion (table 1)121

and of expected log predictive density (ELPD), relative to the three competing models which used122

a negative binomial observation model. Pareto-smoothed important sampling serves as a guide to123

model selection [23]; like other information criteria it approximates the error in cross-validation124

predictions. Smaller values indicate a model which makes better predictions. The calculation of125

PSIS-LOO can also provide some clues about potential model �ts; in our case the algorithm sug-126

gested that the constant connectance model was sensitive to extreme observations. The expected127

log predictive density (ELPD), on the other hand, measures the predictive performance of the128

model; here, higher values indicate more reliable predictions [23]. This suggests that the �exible129

links model will make the best predictions of L.130

To be useful to ecologists, predictions of Lmust staywithin realistic boundaries determined by eco-131

logical principles. We generated posterior predictions for all models and visualized them against132

these constraints (�g. 1). The LSSL model underestimates the number of links, especially in large133

networks: its predictions were frequently lower than the minimum S − 1. The constant con-134

7



nectance and power lawmodels alsomade predictions below this value, especially for small values135

of S. The �exible links model made roughly the same predictions, but within ecologically realistic136

values.137

The �exible links model makes realistic predictions for small communi-138

ties139

Constraints on food web structure are especially important for small communities. This is empha-140

sized in �g. 2, which shows that all models other than the �exible links model fail to stay within141

realistic ecological constraints when S is small. The link-species scaling model made around 29%142

of unrealistic predictions of link numbers for every value of S (3 ≤ S ≤ 750). The constant con-143

nectance and power lawmodels, on the other hand, also produced unrealistic results but for small144

networks only: more than 20%were unrealistic for networks comprising less than 12 and 7 species,145

respectively. Only the �exible links model, by design, never failed to predict numbers of links be-146

tween S − 1 and S2. It must be noted that unrealistic predictions are most common in the shaded147

area of �g. 2, which represents 90% of the empirical data we used to �t the model; therefore it148

matters little that models agree for large S, since there are virtually no such networks observed.149

Parameter estimates for all models150

Table 2: Parameter estimates for all models. Mean and standard deviation (SD) are given for each
parameter.

Model parameter interpretation value SD

bS [11] b links per species 2.2 0.047

� concentration of L around mean 1.4 0.12

bS2 [12] b proportion of links realized 0.12 0.0041

� concentration of L around mean 4.0 0.37

bSa [13] b proportion of relationship 0.37 0.054
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Model parameter interpretation value SD

a scaling of relationship 1.7 0.043

� concentration of L around mean 4.8 0.41

(S2 − (S − 1))p + S − 1 � average value of p 0.086 0.0037

� concentration around value of � 24.3 2.4

Although we did not use the same approach to parameter estimation as previous authors, our151

approach to �tting these models recovered parameter estimates that are broadly congruent with152

previous works. We found a value of 2.2 for b of the LSSL model (table 2), which is close to the153

original value of approximately 2 [11]. Similarly, we found a value of 0.12 for b of the constant154

connectance model, which was consistent with original estimates of 0.14 [12]. Finally, the param-155

eter values we found for the power law were also comparable to earlier estimates [13]. All of these156

models were �t with a negative binomial observation model, which has an additional parameter,157

�, which is sometimes called a “concentration” parameter. This value increases from the top of our158

table to the bottom, in the same sequence as predictive performance improves in table 1. This in-159

dicates that themodel predictions aremore concentrated around themean predicted by themodel160

(table 2, column 1).161

Our parameter estimates for the �exible links model are ecologically meaningful. For large com-162

munities, our model should behave similarly to the constant connectance model and so it is no163

surprise that � was about 0.09, which is close to our value of 0.12 for constant connectance. In164

addition, we obtained a rather large value of 24.3 for �, which shrinks the variance around the165

mean of p to approximately 0.003 (var(p) = �(1 − �)∕(1 + �)). This indicates that food webs are166

largely similar in their probability of �exible links being realized (thus showing how our previous167

assumption that p might vary between food webs to be more conservative than strictly required).168

The �exible links model also uses fewer parameters than the power lawmodel and makes slightly169

better predictions, which accounts for its superior performance in model comparison (table 1). In170

�g. S1, we compare the maximum a posteriori (MAP) estimates of our model parameters to their171
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Figure 1: The �exible links model �ts better and makes a plausible range of predictions.
The number of links is plotted as a function of species richness obtained from the posterior distri-
butions of A) the link-species scaling, B) the constant connectance, C) the power law and D) the
�exible linksmodels. In each panel, the colored line represents themedian predicted link number
and the grey areas cover the 78% and 97% percentile intervals. Empirical data from the mangal.io
database are plotted in each panel (grey dots), as well as theminimal S−1 andmaximal S2 number
of links (thinner and bolder black lines, respectively). Predictions from the �exible links model
are always plausible: they stay within these biological boundaries.
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Figure 2: Only the�exible linksmodelmakes realistic predictions for small communities.
Here we show the proportion of posterior predictions from each of our 4models which fall outside
ecologically realistic values. The proportion of predictions in the correct range increases with
species richness for the constant connectance and power law models. Shaded area shows the
5%, 50% and 95% quantiles of the distribution of S, demonstrating that many communities have
potentially incorrect predictions under previous models.
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maximum likelihood estimates (MLE).172

Connectance and linkage density can be derived from amodel for links173

Of the three important quantities which describe networks (L, Co and LD), we have directly mod-174

elled L only. However, we can use the parameter estimates from our model for L to parameterize175

a distribution for connectance (L∕S2) and linkage density (L∕S). We can derive this by noticing176

that eq. (4) can be rearranged to show how Co and LD are linear transformations of p:177

Co = L
S2

= p (1 − S − 1
S2

) + S − 1
S2

, (6)

and178

LD =
L
S = p (S − S − 1

S ) + S − 1
S , (7)

For food webs with many species, these equations simplify: eq. (4) can be expressed as a second179

degree polynomial, LFL = p×S2+(1−p)×S+(p−1), whose leading term isp×S2. Therefore, when180

S is large, eq. (6) and eq. (7) respectively approach Co = L∕S2 ≈ p and LD = L∕S ≈ pS. A study of181

eq. (6) and eq. (7) also provides insight into the ecological interpretation of the parameters in our182

equation. For example, eq. (7) implies that adding n species should increase the linkage density by183

approximately p×n. The addition of 11 new species (p−1 according to table 2) should increase the184

linkage density in the food web by roughly 1, meaning that each species in the original network185

would be expected to develop 2 additional interactions. Similarly, eq. (6) shows that when S is186

large, we should expect a connectance which is a constant. Thus p has an interesting ecological187

interpretation: it represents the average connectance of networks large enough that the proportion188

(S − 1)∕S2 is negligible.189
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Applications of the �exible links model to key food web questions190

Our model is generative, and that is important and useful: we can use this model to correctly191

generate predictions that look like real data. This suggests that we can adapt the model, using192

either its parameters or predictions or both, to get a new perspective onmany questions in network193

ecology. Here we show four possible applications that we think are interesting, in that relying on194

our model eliminates the need to speculate on the structure of networks, or to introduce new195

hypotheses to account for it.196

Probability distributions for LD and Co197

In a beta-binomial distribution, it is assumed that the probability of success p varies among groups198

of trials according to a Beta(��, (1 − �)�) distribution. Since p has a beta distribution, the linear199

transformations described by eq. (6) and eq. (7) also describe beta distributions which have been200

shifted and scaled according to the number of species S in a community. This shows that just as L201

must be within ecologically meaningful bounds, Co (eq. (6)) and LD (eq. (7)) must be as well. The202

connectance of a food web is bounded by (S − 1)∕S2 and 1, while the linkage density is bounded203

by (S − 1)∕S and S.204

We can convert the beta distribution for p into one for Co by replacing p with the transformation205

of Co as described above (eq. (6)), and rescaling by the new range:206

[Co|S, �, �] =

(
Co − S−1

S2

)��−1
(1 − Co)(1−�)�−1

(
1 − S−1

S2

)�−1
× B(��, (1 − �)�)

(8)

Similarly, we can convert the distribution for p into one for LD by replacing p with the transfor-207

mation that gives LD (eq. (7))208

[LD|S, �, �] =

(
LD −

S−1

S

)��−1
(1 − LD)

(1−�)�−1

(
S − S−1

S

)�−1
× B(��, (1 − �)�)

(9)
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Figure 3: Connectance and linkage density can be derived from amodel for links. A) Con-
nectance and B) linkage density are plotted as a function of species richness, for the maximum
a posteriori estimates of the �exible links model. In each panel, the colored line represents the
median predicted quantity and the grey areas cover the 78% and 97% percentile intervals. Empir-
ical data from the mangal.io database are plotted in each panel (grey dots). In A), the minimal
(S − 1)∕S2 connectance and in B) the minimal (S − 1)∕S and maximum S linkage density are
plotted (black lines).

In �g. 3, we show that the connectance and linkage density obtained from the equations above �t209

the empirical data well.210

An analytic alternative to null-model testing211

Ecologists are often faced with the issue of comparing several networks. A common question is212

whether a given network has an “unusual” number of links relative to some expectation. Tradi-213

tionally these comparisons have been done by simulating a “null” distribution of randommatrices214

[24,25]. This is intended to allow ecologists to compare food webs to a sort of standard, hopefully215

devoid of whatever biological process could alter the number of links. Importantly, this approach216

assumes that (i) connectance is a �xed property of the network, ignoring any stochasticity, and (ii)217

the simulated network distribution is an accurate and unbiased description of the null distribu-218

tion. Yet recent advances in the study of probabilistic ecological networks show that the existence219
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of links, and connectance itself is best thought of as a probabilistic quantity [18]. Given that con-220

nectance drives most of the measures of food web structure [17], it is critical to have a reliable221

means of measuring di�erences from the expectation. We provide a way to assess whether the222

number of links in a network (and therefore its connectance) is surprising. We do so using maths223

rather than simulations.224

The shifted beta-binomial can be approximated by a normal distributionwithmean L̄ and variance225

�2L:226

L ∼ Normal(L̄, �2L)

L̄ = (S2 − S + 1)� + S − 1

�2L = (S2 − S + 1)�(1 − �)(1 +
S(S − 1)
� + 1

) (10)

This normal approximation is considered good whenever the skewness of the target distribution227

is modest. In food webs, this should be true whenever communities have more than about 10228

species (see Experimental Procedures). This result means that given a network with observed229

species richness Sobs and observed links Lobs, we can calculate its z-score, i.e. how many standard230

deviations an observation is from the population average, as231

z =
Lobs − L̄
√
�2L

. (11)

A network where L = L̄ will have a z-score of 0, and any network with more (fewer) links will232

have a positive (negative) z-score. Following this method, we computed the empirical z-scores233

for the 255 food webs archived on mangal.io (�g. 4). We found that 18 webs (7.1%) had a total234

number of observed links unusually higher than what was expected under the �exible linksmodel235
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(z > 1.96). These networks are interesting candidates for the study of mechanisms leading to high236

connectance.237

Out of the 255 food webs, none was found to have an unusually low number of links (z < 1.96).238

In fact, z-scores this low are not possible in this dataset: food webs having the minimum value of239

S − 1 links are still within two standard deviations of the mean, for this sample. However, this240

sample contains the full diversity of food webs found in the mangal.io database. Hence, this does241

not mean that no food web will ever have a z-score lower than -1.96. If the �exible links model242

is �t to data from a speci�c system, food webs might have a surprisingly low number of links243

when compared to this population average. These networks would be interesting candidates for244

the study of mechanisms leading to low connectance or for the identi�cation of under-sampled245

webs. Ecologists can thus use our method to assess the deviation of their own food webs from246

their random expectations.247

In �g. 5, we show that the predictions made by the normal approximation (panel B) are similar248

to those made by the beta distribution parameterized with the maximum a posteriori values of �249

and � (panel A), although the former can undershoot the constraint on the minimum number of250

links. This undershooting, however, will not in�uence any actual z-scores, since no food webs251

have fewer than S − 1 links and therefore no z-scores so low can ever be observed.252

We should see many di�erent network-area relationships253

Our results bear important consequences for the nascent �eld of studying network-area relation-254

ships [26]. As it has long been observed that not all species in a food web di�use equally through255

space [27], understanding how the shape of networks varies when the area increases is an impor-256

tant goal, and in fact underpins the development of a macroecological theory of food webs [28].257

Using a power-law as the acceptable relationship between species and area [29,30], the core idea258

of studying NAR is to predict network structure as a consequence of the e�ect of spatial scale on259

species richness [26]. Drawing on these results, we provide in �g. 6 a simple illustration of the fact260

that, due to the dispersal of values of L, the relationship between L∕S and area can have a really261
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Figure 4: Empirical distribution of food web z-scores The z-scores of all food webs archived
on mangal.io have been computed using eq. (11). Food webs with an absolute z-score above 1.96
are in pink. The shaded region comprises all food webs with an absolute z-score below 1.96.
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Figure 5: The shifted beta-binomial distribution can be approximated by a normal dis-
tribution. The number of links is plotted as a function of species richness obtained from A) the
maximum a posteriori estimates of the �exible links model and B) its normal approximation. In
each panel, the colored line represents the median predicted link number and the grey areas cover
the 78% and 97% percentile intervals. The minimal S − 1 and maximal S2 numbers of links are
plotted in each panel (thinner and bolder black lines, respectively).
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wide con�dence interval. While our posterior predictions generally match the empirical results262

on this topic [31], they suggest that wewill observemany relationships between network structure263

and space, and that picking out the signal of network-area relationships might be di�cult.264

As of now, not many NARs have been documented empirically; but after the arguments made by265

[26] which tie the shape of these relationships to macroecological processes, we fully expect these266

relationships to bemore frequently describedmoving forward. Our results suggest that our expec-267

tation of the amount of noise in these relationships should be realistic; while it is clear that these268

relationships exist, because of the scaling of dispersion in the number of links with the number of269

species, theywill necessarily be noisy. Any described relationshipswill existwithin extremelywide270

con�dence intervals, and it might require a large quantity of empirical data to properly character-271

ize them. As such, our model can help in assessing the di�culty of capturing some foundational272

relationships of food web structure.273

Stability imposes a limit on network size274

Can organisms really interact with an in�nite number of partners? According to eq. (7), at large275

values of S, the linkage density scales according top×S (which is supported by empirical data), and276

so species are expected to have on average 2×p× S interactions. A useful concept in evolutionary277

biology is the “Darwinian demon” [32], i.e. an organism that would have in�nite �tness in in�nite278

environments. Ourmodel seems to predict the emergence ofwhatwe call Eltonian demons, which279

canhave arbitrarily large number of interactions. Yetwe know that constraints on handling time of280

prey, for example, imposes hard limits on diet breadth [33]. This result suggests that there are other281

limitations to the size of food webs; indeed, the fact that L∕S increases to worryingly large values282

only matters if ecological processes allow S to be large enough. It is known that food webs can get283

as high as energy transfer allows [5], and aswide as competition allows [34]. Furthermore, inmore284

species-rich communities there is a greater diversity of functional traits among the interacting285

organisms; this limits interactions, because traits determine suitable interaction partners [35,36].286

In short, and as �g. 2 suggests, since food webs are likely to be constrained to remain within an287
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Figure 6: Many di�erent network-area relationships are supported by the data. Represent-
ing the species richness as S = k×Az (panel A), withA being the relative area size, k = 200 being
the maximal species richness, and z = 0.27 a scaling exponent [26]. We then use the posterior
distribution of L to predict how LD should scale withA. We compare the predictions of our model
to that of the generally accepted power law (eq. (3)). While our model predicts a larger linkage
density in larger areas (panel B), the con�dence intervals around this prediction (grey areas cov-
ering the 78% and 97% percentile intervals) are extremely large. In particular, our model scales
faster than the power law, but the con�dence interval is high (due to the scaling of variance with
S, eq. (10)). This suggests that we may observe either very weak, or very strong, e�ects of area on
networks.
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acceptable richness, we have no reason to anticipate that p × S will keep growing in�nitely.288

Network structure may itself prevent S from becoming large. May [37] suggested that a network289

of richness S and connectance Co is stable as long as the criteria �
√
S × Co < 1 is satis�ed, with �290

being the standard deviation of the strengths of interactions. Although this criteria is not necessar-291

ily stringent enough for the stability of food webs [38,39], it still de�nes an approximatemaximum292

value �⋆ which is the value above which the system is expected to be unstable. This threshold is293

�⋆ = 1∕
√
LD, where LD is de�ned as in eq. (7). We illustrate this result in �g. 7, which reveals that294

�⋆ falls towards 0 for larger species richness. The result in �g. 7 is in agreement with previous sim-295

ulations, placing the threshold for stability at about 1200 species in food webs. These results show296

how ecological limitations, for example on connectance and the resulting stability of the system,297

can limit the size of food webs [38,40]. In the second panel, we show that networks of increasing298

richness (thicker lines, varying on a log-scale from 101 to 103) have a lower probability of being299

stable, based on the proportion of stable networks in our posterior samples.300

Conclusions301

Here we derived eq. (4), a model for the prediction of the number of links in ecological networks302

using a beta-binomial distribution for L, and show how it outperforms previous and more com-303

monly used models describing this relationship. More importantly, we showed that our model304

has parameters with a clear ecological interpretation (speci�cally, the value of p in eq. (4) is the305

expected value of the connectance when S is large), and makes predictions which remain within306

biological boundaries. There are a variety of “structural” models for food webs, such as the niche307

model [41], the cascade model [42], the DBM [35] and ADBM [19], the minimum potential niche308

model [43], and the nested hierarchy model [44] to name a few. All of these models make predic-309

tions of food web structure: based on some parameters (usually S and L, and sometimes vectors310

of species-level parameters) they output an adjacency matrixAS×S which contains either the pres-311

ence or strength of trophic interactions. Therefore, these models require estimated values of L for312

a particular value of S, with the additional result that
∑
A = L. Our approach can serve to improve313
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Figure 7: Stability imposes a limit on network size. Using eq. (7), we can calculate the max-
imum standard deviation in the strength of interactions which should ensure food web stability,
�⋆ = 1∕

√
LD (panel A). The colored line represent the median value of maximum standard devi-

ation, based on the posterior distribution of the �exible links model, and the grey areas cover the
78% and 97% percentile intervals. The �ne and dark lines indicate the maximum and minimum
values of maximum standard deviation, respectively. The dotted line shows the maximum for the
average LD, as given by eq. (7). The maximum standard deviation falls sharply when the number
of species increases, which will limit the stability of large food webs, and therefore explain why
Eltonian demons should not emerge. In panel B, we show the probability of a network with S
species being stable, based on draws from the posterior distribution, for 10 ≤ S ≤ 1000 - larger
networks (thicker lines) are increasingly unlikely to be stable.
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the realism of these models, by imposing that the values of L they use are within realistic bound-314

aries. For example, a common use of structural models is to generate a set of “null” predictions:315

possible values of A and L in the absence of the mechanism of interest. Empirical networks are316

then compared to this set of predictions, and are said to be signi�cant if they aremore extreme than317

95% of the observations [3]. A challenge in this approach is that structural models may generate318

a wide range of predictions, including ecologically impossible values, leading a high false nega-319

tive rate. This could be remedied by �ltering this set of predictions according to our �exible links320

model, resulting in a narrower set of null predictions and a lower false negative rate. In general,321

our approach is complementary to other attempts to create ecologically-realistic food webmodels;322

for example, probabilistic models of the number of links per species which stay within ecological323

values [45].324

This model also casts new light on previous results on the structure of food webs: small and large325

food webs behave di�erently [15]. Speci�cally, ecological networks most strongly deviate from326

scale free expectations when connectance is high [46]. In our model, this behaviour emerges nat-327

urally: connectance increases sharply as species richness decreases (�g. 3) – that is, where the ad-328

ditive term (S−1)∕S2 in eq. (6) becomes progressively larger. In a sense, small ecological networks329

are di�erent only due to the low values of S. Small networks have only a very limited number of330

�exible links, and this drives connectance to be greater. Connectance in turn has implications for331

many ecological properties. Connectance is more than the proportion of realized interactions. It332

has been associated with some of the most commonly used network measures [17], and contains333

meaningful information on the stability [46,47] and dynamics [48] of ecological communities. A334

probability distribution for connectance not only accounts for the variability between networks,335

but can be used to describe fundamental properties of food webs and to identify ecological and336

evolutionary mechanisms shaping communities. A recent research direction has been to reveal337

its impact on resistance to invasion: denser networkswith a higher connectance are comparatively338

more di�cult to invade [49]; di�erent levels of connectance are also associatedwith di�erent com-339

binations of primary producers, consumers, and apex predators [41], which in turns determines340

which kind of species will have more success invading the network [50]. Because we can infer341
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connectance from the richness of a community, our model also ties the invasion resistance of a342

network to its species richness.343

The relationship between L and S has underpinned most of the literature on food web structure344

since the 1980s. Additional generations of data have allowed us to progress from the link-species345

scaling law, to constant connectance, to more general formulations based on a power law. Our346

model breaks with this tradition of iterating over the same family of relationships, and instead347

draws from our knowledge of ecological processes, and from novel tools in probabilistic program-348

ming. As a result, we provide predictions of the number of links which are closer to empirical data,349

stimulate new ecological insights, and can be safely assumed to always fall within realistic values.350

The results presented in �g. 6 (which reproduces results from [26]) and �g. 7 (which reproduces351

results from [38]) may seem largely con�rmatory; in fact, the ability of ourmodel to reach the con-352

clusions of previous milestone studies in food web ecology is a strong con�rmation of its validity.353

We would like to point out that these approaches would usually require ecologists to make infer-354

ences not only on the parameters of interests, but also on the properties of a network for a given355

species richness. In contrast, our model allows a real economy of parameters and o�ers ecologists356

the ability to get several key elements of network structure for free if only the species richness is357

known.358

Experimental Procedures359

Availability of code and data360

All code and data to reproduce this article is available at the Open Science Framework (DOI:361

10.17605/OSF.IO/YGPZ2).362
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Bayesian model de�nitions363

Generative models are �exible and powerful tools for understanding and predicting natural phe-364

nomena. These models aim to create simulated data with the same properties as observations.365

Creating such a model involves two key components: a mathematical expression which repre-366

sents the ecological process being studied, and a distribution which represents our observations367

of this process. Both of these components can capture our ecological understanding of a system,368

including any constraints on the quantities studied.369

Bayesian models are a common set of generative models, frequently used to study ecological sys-370

tems. Here, we de�ne Bayesian models for all 4 of the models described in eq. (1), eq. (2), eq. (3)371

and eq. (4). We use notation from [51], writing out both the likelihood and the prior as a product372

over all 255 food webs in the mangal.io database.373

Link-species scaling (LSSL) model:374

[b, �|L, S] ∝
255∏

i=1

negative binomial(Li|b × Si, e�) × normal(b|0.7, 0.02) × normal(�|2, 1)

Constant connectance model:375

[b, �|L, S] ∝
255∏

i=1

negative binomial(Li|b × S2i , e�) × beta(b|3, 7) × normal(�|2, 1)

Power law model:376

[b, a, �|L, S] ∝
255∏

i=1

negative binomial(Li| exp(b)×Sai , e�)×normal(b|−3, 1)×normal(a|2, 0.6)×normal(�|2, 1)

Flexible links model:377
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[�, �|L, S] ∝
255∏

i=1

beta binomial(Li−Si+1|S2i −Si+1, �×e�, (1−�)×e�)×beta(�|3, 7)×normal(�|3, 0.5)

Note that while e� is shown in these equations for clarity, in the text we use � to refer to the378

parameter after exponentiation. In the above equations, bold type indicates a vector of values; we379

use capital letters for L and S for consistency with the main text.380

Because we want to compare all our models using information criteria, we were required to use381

a discrete likelihood to �t all models. Our model uses a discrete likelihood by default, but the382

previous three models (LSSL, constant connectance and the power law) normally do not. Instead,383

these models have typically been �t with Gaussian likelihoods, sometimes after log-transforming384

L and S. For example, eq. (3) becomes a linear relationship between log(L) and log(S). This en-385

sures that predictions of L are always positive, but allows otherwise unconstrained variation on386

both sides of the mean. To keep this same spirit, we chose the negative binomial distribution for387

observations. This distribution is limited to positive integers, and can vary on both sides of the388

mean relationship.389

We selected priors for our Bayesianmodels using a combination of literature and domain expertise.390

For example, we chose our prior distribution for p based on [12] , who gave a value of constant391

connectance equal to 0.14. While the prior we use is “informative”, it is weakly so; as [12] did392

not provide an estimate of the variance for his value we chose a relatively large variation around393

that mean. However, no information is available in the literature to inform a choice of prior for394

concentration parameters � and �. For these values, we followed the advice of [52] and performed395

prior predictive checks. Speci�cally, we chose priors that generated a wide range of values for Li,396

but which did not frequently predict webs of either maximum or minimum connectance, neither397

of which are observed in nature.398
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Explanation of shifted beta-binomial distribution399

Equation eq. (4) implies that LFL has a binomial distribution, with S2−S+1 trials and a probability400

p of any �exible link being realized:401

[L|S, p] =
(S2 − (S − 1)
L − (S − 1)

)
pL−(S−1)(1 − p)S2−L,

This is often termed a shifted binomial distribution.402

We also note that ecological communities are di�erent in many ways besides their number of403

species (S). Although we assume p to be �xed within one community, the precise value of p will404

change from one community to another. With this assumption, our likelihood becomes a shifted405

beta-binomial distribution:406

[L|S, �, �] =
(S2 − (S − 1)
L − (S − 1)

)B(L − (S − 1) + ��, S2 − L + (1 − �)�)
B(��, (1 − �)�)

(12)

Where B is the beta function. Thus, the problem of �tting this model becomes one of estimating407

the parameters of this univariate probability distribution.408

Model �tting - data and software409

Weevaluated ourmodel against 255 empirical foodwebs, available in the online database mangal.io410

[21]. We queried metadata (number of nodes and number of links) for all networks, and consid-411

ered as food webs all networks having interactions of predation and herbivory. We use Stan [53]412

which implements Bayesian inference using Hamiltonian Monte Carlo. We ran all models using413

four chains and 2000 iterations per chain. In our �gures we use the posterior predictive distri-414

bution, which is a distribution described by the model after conditioning on the data. There are415

numerous ways to display a probability distribution; here we have chosen to do so using the expec-416

tation (mean) and two arbitrary percentile intervals: 78% and 97%. These intervals were chosen417
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based on the recommendations of [54], and allowed us to capture most of the probability density418

in the tails of the posterior distributions.419

Stan provides a number of diagnostics for samples from the posterior distribution, including R̂,420

e�ective sample size, and measures of e�ective tree depth and divergent iterations. None of these421

indicated problems with the posterior sampling. All models converged with no warnings; this422

indicates that is it safe to make inferences about the parameter estimates and to compare the mod-423

els. However, the calculation of PSIS-LOO for the LSSLmodel warned of problematic values of the424

Pareto-k diagnostic statistic. This indicates that the model is heavily in�uenced by large values.425

Additionally, we had to drop the largest observation (> 50 000 links) from all datasets in order426

to calculate PSIS-LOO for the LSSL model. Taken together, this suggests that the LSSL model is427

insu�ciently �exible to accurately reproduce the data.428

Normal approximation and analytic z-scores429

We propose using a normal approximation to the beta-binomial distribution, to calculate analytic430

z-scores. This is based on a well-known similarity between the shape of a normal distribution and431

a binomial distribution. This approximation is considered good whenever the absolute skewness432

is less than 0.3 [55], that is whenever:433

1
√
S2 − S + 1

⎛
⎜
⎝

√
1 − �
� −

√
�

1 − �
⎞
⎟
⎠
< 0.3

The beta-binomial distribution is close to the binomial distribution. The error in approximating434

the former with the latter is on the order of the inverse square of the parameter � [56], which for435

our model is less than 0.0017.436
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