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Abstract: The current pandemic of SARS-CoV-2 is a stark reminder that we need a better

understanding of the movements of viruses through novel animal hosts, and ultimately to hu-

mans. The task of predicting which virus can infect which host, and where spillovers are likely

to happen, still remains difficult. Typically, anticipatory approaches can be limited by numer-

ous difficulties (lack of suitable data, disagreement between models, etc.), and would therefore

benefit from adding methods allowing imputation and producing results that could easily be

added to ensemble models. In this study, we explore the potential of using the Singular Value

Decomposition (SVD) technique as an imputation method to predict host-virus interactions.



TK rework this paragraph: need to predict host-virus associations1

The current pandemic of SARS-CoV-2 is a stark reminder that movement of viruses through2

novel animal hosts, and ultimately to human through zoonotic spillovers (Plowright et al. 2017),3

requires that we understand the complexity of our biological surroundings. Indeed, the fact that4

the majority of emerging infectious diseases are caused by zoonotic pathogens from wildlife5

sources (Jones et al. 2008) gives some urgency to the task of predicting which viruses can be6

found in which hosts, so as to provide guidance on where and what species to sample and where7

spillovers are likely to happen (Johnson et al. 2020; Albery et al. 2020).8

As seen with SARS-CoV and MERS-CoV epidemics, novel human infections by viruses are9

representing a serious threat to global public health, and being able to prevent future viral emer-10

gence now appears as a fundamental tool among our society. Zoonotic dynamics usually involve11

three main stages: transmission within the animal reservoir, cross-species spillover and trans-12

mission to human, and finally, transmission among humans (Lloyd-Smith et al. 2009). In the13

past decades, substantial research effort has been put in studying and predicting dynamics at the14

animal-human interface, but tracing back the ultimate origin of novel zoonotic viruses remains15

a major difficulty (Becker et al. 2020). Also, the main strategy adopted so far against infectious16

diseases consists in taking actions after the emergence by increasing the health infrastructures17

and vigilance, as well as developing vaccines or medical treatments (Han and Drake 2016).18

As suggested by Han and Drake (2016), a more efficient approach would be anticipatory. Yet19

an anticipatory approach can be limited by lack of suitable data, and as Becker et al. (2020)20

highlighted, by disagreement between models. The task of predicting possible host-virus inter-21

actions would therefore benefit from adding methods that allow imputation, and can produce22

results that are easily added to ensemble models. Here, we explore an approach focusing on23

the first stage of zoonoses dynamics, by using the Singular Value Decomposition (SVD) as an24

imputation method for identifying unobserved host-virus interactions, acting as potential inter-25

mediate hosts in diseases transmissions.26

TK SVD is a way to do link prediction in the absence of external information, but we can rely27

on info contained in the network itself28

TK main results: optimal rank, number of new associations, top 10 zoonoses29
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Dataset30

TK this actually uses CLOVER now31

We apply SVD imputation to the data on wildlife hosts of beta-coronaviruses collected by32

Becker et al. (2020). This host-virus network is composed of 710 mammalian hosts (resolved33

at the species level) and 72 viruses (resolved at the genus level). Full data are available from34

https://github.com/viralemergence/virionette/. While the host-virus interaction have35

been pulled from published sources, specific attention has been paid to betacoronaviruses, a vi-36

ral genus at high risk of spillover, and to their potential bat hosts, a mammalian order known37

to be evolutionary involved in the main viruses zoonotic historical epidemics (Shipley et al.38

2019; Ren et al. 2006). Data on interactions between these groups were augmented by a Gen-39

Bank search to retrieve the hosts associated to sequences of betacoronaviruses. Altogether, this40

dataset represents a total of 1731 unique interactions, and 49389 host-virus pairs for which no41

interaction were reported; these can be true negatives (the virus is unable to infect the host), or42

false negatives (the virus can infect the host but the infection has not been reported). This type43

of problem lends itself well to an approach using a recommender system.44

The model45

We ran all analyses in Julia 1.5.3 (Bezanson et al. 2017), on the Beluga supercomputer operated46

by the Calcul Québec consortium.47

Low-rank approximation with Singular Value Decomposition48

Singular Value Decomposition (SVD; Gene H. Golub and Reinsch 1971; Forsythe and Moler49

1967) is a linear algebra technique used to decompose a data matrix in a product of three matri-50

ces:51

X = U�VT (1)
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WhereX is am×n data matrix (m ≥ n),U is an unitarym×mmatrix containing the left singular52

vectors, V is an unitary n × n matrix containing the right singular vectors and � is a diagonal53

matrix containing the singular values ordered in decreasing order of importance, in regard of54

the quantity of information that they present. This process allows data reduction by finding key55

correlations among entries and then by approximating the original matrix.56

Optimal truncation of the SVD at rank r (Eckart and Young 1936; G. H. Golub, Hoffman, and57

Stewart 1987) of the singular values will allow data reduction while keeping enough information58

to obtain a balance between complexity and accuracy within the model. Truncation at rank rwas59

performed by setting values �(r+1)..m to 0 (we note the resulting vector (r)�), and the resulting60

low-rank approximation was obtained by61

(r)X = U (r)�VT (2)

We illustrate the process on our dataset in fig. 1. Removing signal from thematrix through a low-62

rank approximation hinges on the assumption that most data are generated by “low-rank” pro-63

cesses, whereas the additional ranks would reflect noise or idiosyncracies acting in the dataset.64

Under this assumption, an imputation method using a low-rank approximation would have a65

good performance.66

[Figure 1 about here.]67

Model structure68

For each non-interaction in the dataset, the model assigns an initial value to it and performs69

iteratively the SVD at chosen rank, until it reaches convergence. During this step, the cells in the70

matrix that are not being imputed are kept at their actual value. We capped the maximal number71

of iterations at 50, even though the value of the imputed cells stopped changing (defined as a72

step-wise change lower than 10 × �) after less than 10 steps in most cases. The initial value that73

we first picked for this illustration is the connectance of the global host-virus interaction dataset,74

which amounts to the probability that any pair of organisms are found to interact (0.03).Yet,75
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this can overestimate the importance of viruses with a narrow host range, or underestimate the76

importance of generalist viruses. For this reason, the assignment of the initial value was then77

determined based (Stock et al. 2017) work on linear filtering. This method provides a convenient78

way to assign weights to various aspects of network structure, and has been revealed to provide a79

good baseline estimate of how likely it is that a missing interaction actually exists, based on the80

structure of the interaction matrix, without the need of having other side information, such as81

traits or phylogeny. Considering ourm×n data matrixX, the initial value of a missing interaction82

was fixed to the filtered value Fij :83

Fi,j = �1Xi,j + �2
1
m

m
∑

k=1
Xkj + �3

1
n

n
∑

l=1
Xil + �4

1
mn

m
∑

k=1

n
∑

l=1
Xkl (3)

where
4
∑

i=1
�i = 1 and �i ∈ [0, 1].84

Prediction scoring85

Using the linear filter allows to explore different hypotheses as to which parts of network struc-86

ture are important for predictive ability. As we assume that the initial value of 0 in the matrix87

can be a false positive, we give it no weight in the model �1 = 0. TK change from here We88

then varied the other parameters on a regular grid of 304 points, where the values for �4 (impact89

of connectance), �2 (impact of the number of hosts), and �3 (impact of the number of viruses)90

was varied between 0 and 1. We then applied SVD imputation for each of these parameters91

combinations for ranks 1 to 3.92

To rank the predictions made by the SVD-imputation, we took the value for every missing in-93

teraction after imputation, and divided it by the initial value, then substracted one. This gives94

an evidence score in ℝ, which we can transform into a probability in [0, 1] by taking its logistic;95

therefore, the final probability of an interaction is defined as96

P (x) = 1
1 + e−x

,

where x is the evidence for this interaction under our scoring system.97
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Model tuning and thresholding98

One of the challenges associated with link prediction in this dataset is that non-interactions are99

not necessarily true negatives; most are simply missing data. To reach the best prediction, we100

need to answer three related questions. First, what model to assign initial values performs best?101

Second, what rank is sufficient to give the most accurate approximation of the matrix? Finally,102

what threshold on the interaction probability should be applied to the results of the best model103

at the appropriate rank?104

To answer this question, we first ran the LF-SVD imputation on a sample of 768 positive and105

768 supposed negative interactions, at all ranks from 1 to 20, under the three initial value models106

above (degree, hybrid, and connectance). For each of these models, wemeasured the AUC of the107

ROC curve REF. To identify the optimal cutoff in this curve, we selected the probability score108

that maximizes Youden’s index of informedness, which works as a “total evidence” measure of109

model confidence, especially in datasets with severe imbalances in prevalence.110

Table 1: Summary statistics of the performance for the top 5models, ranked according to the area
under the ROC curve. For the sake of completeness, the best Youden’s index (at the threshold)
is reported, as well as the rates of false discovery and false omission.

model rank threshold AUC Youden’s index false discovery false omission

1 connectance 12 0.846 0.849 0.64 0.09 0.23

2 connectance 11 0.908 0.846 0.62 0.08 0.25

3 connectance 17 0.929 0.844 0.62 0.08 0.24

4 connectance 8 0.705 0.842 0.59 0.13 0.24

5 hybrid 12 0.707 0.841 0.58 0.14 0.25

The resulst of hyper-parameters tuning is presented in tbl. 1. The best performing model, using111

network connectance as an initial value, and a rank 12 approximation of thematrix, had a positive112

predictive value of 0.90, and a negative predictive value of 0.76, for an overall accuracy of 0.82.113

All things considered, given that the prevalence in the dataset is very low (only six out of every114

thousand species pair do have an interaction), the best model has strong predictive power. The115
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ROC curve for this model is presented in fig. 2.116

[Figure 2 about here.]117

Results and Discussion118

First, we report the top 10 likely hosts for betacoronaviruses, using the connectance of the net-119

work as initial values, which are ranked by their final value post imputation; larger values should120

indicate that the interactions are more likely to be possible. We report the novel hosts (identified121

post Becker et al. (2020), according to https://www.viralemergence.org/betacov). These122

results are presented in tbl. 2 - the novel hosts are presented in bold. Using a rank 2 approxima-123

tion of the dataset, we have 5 novel hosts, and 4 identified as “suspected” hosts by the Becker124

et al. (2020) ensemble model, currently lacking empirical evidence. This suggests that rank 2125

contains the most information about the processes generating the data, and can therefore be used126

to infer other associations.127

Table 2: Top 10 likely hosts for betacoronaviruses using the connectance of the network as initial
values

Rank 1 Rank 2

Artibeus jamaicensis Hipposideros pomona

Scotophilus kuhlii Scotophilus kuhlii

Molossus rufus Artibeus jamaicensis

Sturnira lilium Carollia brevicauda

Desmodus rotundus Chaerephon pumilus

Glossophaga soricina Molossus rufus

Eptesicus fuscus Glossophaga soricina

Tadarida brasiliensis Desmodus rotundus

Myotis nigricans Sturnira lilium

Myotis lucifugus Hipposideros larvatus
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Based on this information, we have also extracted the 10 highest scoring interactions across128

the entire matrix at rank 2 (Table 2). The results demonstrates that within the entire dataset,129

including all mammalian hosts and viruses’ genus, 5 out of the 10 highest scoring interactions130

are involving bat hosts (presented in italic), and 8 out of the 10 interactions are involving the131

lyssavirus genus. This genus includes the rabies virus (RABV), and other neurotropic rabies-132

related viruses (Warrell and Warrell 2004).133

[Table 2: Top 10 likely missing interactions across the entire dataset using the connectance of134

the network as initial values]135

Hosts species Viruses genus

Sus scrofa Lyssavirus

Hipposideros armiger Lyssavirus

Rattus norvegicus Lyssavirus

Myodes glareolus Lyssavirus

Pipistrellus abramus Lyssavirus

Sus scrofa Orbivirus

Capra hircus Alphavirus

Rhinolophus sinicus Lyssavirus

Myotis ricketti Lyssavirus

Rhinolophus affinis Lyssavirus

Once those results were obtain, further investigations in the form of literature surveys allowed136

to identify that the interaction between Pipistrellus abramus} and lyssaviruses has already been137

noted by Hu et al. (2018); Shipley et al. (2019) reported lyssavirus prevalence in the genus138

Pipstrellus, Myotis, and Rhinolophus. Other confirmed hosts of lyssaviruses are Sus scrofa139

(Sato et al. 2004), and Rattus norvegicus (Wang, Tang, and Liang 2014). Surveillance for140

novel lyssaviruses infections is of great public health interest, since the rabies virus is fatal in all141

cases, once the onset of clinical symptoms has started (Banyard and Fooks 2017). Although it142

is recognized that bats are identified as reservoir hosts for lyssaviruses, the mechanism allowing143

the maintenance of the virus in those populations is still poorly understood (Banyard and Fooks144

9 of 14



2017), and these predictions of interactions might serve as guidance in the monitoring of new145

infections.146

The two non-lyssaviruses associations have been previously reported in the literature (Sus scrofa147

and orbivirus by Belaganahalli et al. (2015); Capra hircus and the equine encephalomyelitis148

caused by an alphavirus as early as Pursell et al. (1972)). This suggests that Singular Value149

Decomposition of available data on host-virus associations can uncover results that have been150

reported in the primary literature, but not incorporated in the main databases used in the field;151

based on the fact that the majority of the top 10 overall associations were able to be validated152

from the literature, we suggest that interactions that have no empirical evidence could be targets153

for additional sampling.154

The initial value to be used for the imputation was then assigned according to the linear filter,155

as presented in the method section. The Table 3 presents the number of novel hosts predicted156

by the model, according to the coefficients used for the filter and to the rank.157

[Table 3: Number of novel hosts for betacoronaviruses correctly predicted by the model using158

linear filtering for the attribution of initial values]159

Alpha Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

[0, 0, 0, 1] 3 3 1 3 4

[0, 1
2
, 1
2
, 0] 3 3 1 3 3

[0, 1
3 , 1

3 , 1
3 ] 3 3 1 4 2

[0, 1, 0, 0] 3 3 1 3 3

[0, 0, 1, 0] 3 3 1 4 3

From the results presented in Table 3, it is possible to see that when using linear filtering for160

the assignment of initial values, the choice of the � parameters does not impact the accuracy161

of the predictions for the first three rank. The fourth and fifth rank then showed a variation per162

� values. The highest scoring interactions for every combinations was then examined and the163

variation of its value before and after the imputation has been calculated, and the results obtained164

are presented in Table 4.165
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[Table 4: Variation of the value pre and post imputation for the highest scoring interaction at166

every rank]167

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

0.536 0.765 0.700 0.990 1.261

This variation was not influenced by the � parameters, but only by the rank used. The variation168

calculated increased as the rank got higher.169

Being able to identify intermediate animal hosts for potential zoonotic pathogens is an important170

step in the fight against potential threats to global public health. Using SVD as an imputation171

method to predict those interactions has demonstrated its potential to achieve this goal by cor-172

rectly identifying the majority of the most likely associations, as validated by literature surveys,173

and by suggesting interactions with no empirical evidence as targets for additional sampling.174

Host-virus associations are a challenging imputation problem, because organized datasets are175

scarce – as a result, a lot of missing associations are reported in the literature, but not available176

in an easily usable format. Yet this also presents an opportunity to validate the performance of177

recommender systems that is far more interesting than cross-fold or leave-one-out validation:178

the existence of these interactions in the literature can provide validation on data that have never179

been used in the modeling process, and therefore provide an accurate estimate of how frequently180

existing interactions are identified. By this measure, that most of the top 10 recommendations181

on this dataset were validated through de novo sampling (for bat hosts of betacoronaviruses) or182

by a literature survey (for the global dataset) is a strong indication that SVD is able to uncover183

likely host-virus pairs.184

Future work on the use of SVD for virus host associations will have to adress the question of185

the initial value used in the imputation process in further details. As of now, we relied on the186

average number of interactions in the matrix, and on weighted allocations for different aspects187

of the network structure, based on Stock et al. (2017) work on linear filtering. This method188

can provide a good baseline estimate of how likely it is that a missing interaction could actually189

exist (and in fact was developed for this purpose). For this reason, we are confident that the190
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performance of the approach can further be improved by fine-tuning the choice of the initial191

value used for imputation, according to the dataset used, or by relying on ensemble models that192

would aggregate the output of the best recommenders. Combining an accurate model for the193

initial value with the SVD imputation is likely to generate predicted interactions that are strong194

candidates for empirical validation.195
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Figure 1: Overview of the dataset (yellow means interaction is more likely, blue means interac-
tions is less likely) at different levels of approximation. At rank very low rank (top row; from
left to right, r = 1 and r = 3) the matrix is mostly capturing the degree of the different species.
At higher ranks (bottom row; from left to right, r = 10 and r = 60), the matrix is capturing
increasing differences in species interactions.
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Figure 2: ROC curve for the best model, using network connectance as an initial value, and a
rank 12 approximation. This model was used to run the prediction of false negatives in the entire
dataset.
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