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Abstract: Quantifying the complexity of ecological networks has remained elusive. Primarily,

complexity has been defined on the basis of the structural (or behavioural) complexity of the

system. These definitions ignore the notion of ‘physical complexity,’ which can measure the

amount of information contained in an ecological network, and how difficult it would be to

compress. We present relative rank deficiency and SVD entropy as measures of ‘external’ and

‘internal’ complexity respectively. Using bipartite ecological networks, we find that they all

show a very high, almost maximal, physical complexity. Pollination networks, in particular,

are more complex when compared to other types of interactions. In addition, we find that SVD

entropy relates to other structural measures of complexity (nestedness, connectance, and spectral

radius), but does not inform about the resilience of a network when using simulated extinction

cascades, which has previously been reported for structural measures of complexity. We argue

that SVD entropy provides a fundamentally more ‘correct’ measure of network complexity and

should be added to the toolkit of descriptors of ecological networks moving forward.



Ecologists have turned to network theory because it offers a powerful mathematical formalism1

to embrace the complexity of ecological communities (Jordi Bascompte and Jordano 2007).2

Indeed, analysing ecological systems as networks highlighted how their structure ties into eco-3

logical properties and processes (Proulx, Promislow, and Phillips 2005; Poulin 2010), and there4

has been a subsequent explosion of measures that purport to capture elements of network struc-5

ture, to be related to the ecology of the system they describe (Delmas et al. 2018). Since the6

early days of network ecology, ecological networks have been called “complex.” This sustained7

interest for the notion of complexity stems, in part, from the strong ties it has to stability (Landi8

et al. 2018). As such, many authors have looked for clues, in the network structure, as to why9

the networks do not collapse (Borrelli 2015; Staniczenko, Kopp, and Allesina 2013; Gravel,10

Massol, and Leibold 2016; Brose, Williams, and Martinez 2006). Yet decades of theoretical11

refinements on the relationship between complexity and stability had a hard time when rigor-12

ously tested on empirical datasets (Jacquet et al. 2016); although ecological networks may be13

complex, our current measures of complexity do not translate into predictions about stability.14

Surprisingly, complexity itself has proven an elusive concept to define in a rigorous way. It15

has over time been defined as connectance (Rozdilsky and Stone 2001), as measures of the16

diversity of species or their interactions (Landi et al. 2018), or as a combination of species17

richness and trophic diversity (Duffy et al. 2007). In short, network ecology as a field readily18

assumes that because we have more information about a system, or because this system has more19

components, or simply because this system can be expressed as a network, it follows that the20

system is complex. But such a diversity of definitions, for a concept that is so central to our quest21

to understand network stability, decreases the clarity of what complexity means, and what all22

of these alternative definitions do actually capture. This is a common thread in some measures23

of ecological network structure, as has been discussed at length for the various definitions of24

nestedness (Ulrich, Almeida-Neto, and Gotelli 2009).25

None of the previous definitions of complexity are formally wrong, in that they do capture an26

aspect of complexity that ultimately ties to the behaviour of the system, i.e. its low predictabil-27

ity over time. Yet Adami (2002) provides a compelling argument for why the complexity of28

the behaviour does not necessarily reflects the complexity of the system; in fact, one would be29
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very hard pressed to think of a more simple system than the logistic map used by May (1976) to30

illustrate how easily complexity of behaviour emerges. Rather than yielding to the easy assump-31

tion that a system will be complex because it has many parts, or because it exhibits a complex32

behaviour, Adami (2002) suggests that we focus on measuring “physical complexity,” i.e. the33

amount of information required to encode the system, and how much signal this information34

contains. Complex systems, in this perspective, are those who cannot easily be compressed -35

and this is a notion we can explore for the structure of ecological networks.36

Ecological networks are primarily represented by their adjacencymatrices, i.e. amatrix in which37

every entry represents a pair of species, which can take a value of 1 when the two species interact,38

and a value of 0when they do not. Thesematrices (as anymatrices) can easily be factorised using39

Singular Value Decomposition (Forsythe and Moler 1967; Gene H. Golub and Reinsch 1971),40

which offers two interesting candidate measures of complexity for ecological networks (both of41

which we describe at length in the methods). The first measure is the rank of the matrix, which42

works as an estimate of “external complexity,” in that it describes the dimension of the vector43

space of this matrix, and therefore the number of linearly independent rows (or columns) of it.44

From an ecological standpoint, this quantifies the number of unique “strategies” represented in45

the network: a network with two modules that are distinct complete graphs has a rank of 2. The46

second measure is an application of the entropy measure of Shannon (1948) to the non-zero47

singular values of the matrix obtained through SVD. This so-called SVD entropy measures the48

extent to which each rank encodes an equal amount of information, as the singular values capture49

the importance of each rank to reconstruct the original matrix; this approach therefore serves as50

a measure of “internal complexity.”51

In this manuscript, we present and evaluate the use of both the rank and SVD entropy of eco-52

logical networks as alternative and more robust measures of complexity when compared to tra-53

ditional approaches to defining complexity. This is done by using a collection of 220 bipartite54

networks from various types of interaction, sizes, connectances, and environments. We show55

that while the rank of the adjacency matrix holds little information, SVD entropy functions as56

an appropriate quantification of the complexity of ecological systems. Notably, SVD entropy57

is an intuitive, robust, non-structural approach to defining the (surprisingly high) complexity of58
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ecological networks, by relating them to their ‘physical’ as opposed to ‘behavioural’ complexity.59

In this process we showcase a breakdown in the assumption that all measures of complexity of60

networks are indicative of their robustness to extinctions. Finally, we show that, despite their61

high complexity, observed networks are less complex when compared to pseudo-random net-62

works, especially for larger networks. We propose that taking a physical approach to quantifying63

the complexity of ecological networks is a step in the right direction to unifying how we define64

complexity in the context of ecological networks, as it restores other measures (like connectance65

and nestedness) to their original role and signification.66

Data and methods67

We used all bipartite networks contained in the web-of-life.es database. This database ex-68

tracted species interaction networks from supplementary materials across all inhabited con-69

tinents and covers a large array of sampling years, environments, organisms, and sampling70

methodologies. As such, this dataset is particularly suited to describe general trends across71

all ecological networks. We specifically worked on the version of this dataset distributed with72

the EcologicalNetworks.jl package (Poisot et al. 2019) for the Julia (Bezanson et al. 2017)73

programming language, in which all analyses were conducted. Using bipartite networks means74

that interacting species are split into two sets (or interacting groups) and along different dimen-75

sions in the interaction matrix. Thus, columns in the matrix represent one group (or type) of76

species and rows represent the other group of species involved in the interaction. Because SVD77

gives similar results on the matrix and its transpose, it captures the complexity of both sides of78

the system at once. A summary of the dataset is given in tbl. 1.79

Table 1: Overview of the web-of-life.es dataset. We used all networks with up to 500 species.
Although there are spatial biases in the sampling of interaction types (and some interaction types
being under-represented), this dataset covers a range of latitudes from -43 degrees south to 81
degrees north. The average richess of the top and bottom level of the bipartite networks are also
given in the last columns.

Interaction type Sample size Latitude range Richness (top) Richness (bottom)

Host-Parasite 51 38.77→ 72.65 20.47 12.23
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Interaction type Sample size Latitude range Richness (top) Richness (bottom)

Plant-Ant 4 -16.11→ -2.40 18.75 21.75

Plant-Herbivore 4 30.20→ 64.91 49.5 29.25

Pollination 134 -43.09→ 81.81 40.22 18.02

Seed Dispersal 33 -28.95→ 53.05 18.75 25.12

Estimating complexity with rank deficiency80

The rank of A (noted as r = rk(A)) is the dimension of the vector space spanned by the matrix81

and corresponds to the number of linearly independent rows or columns; therefore, themaximum82

rank of a matrix (M = rkmax(A)) will always be equal to the length of the shortest dimension83

of A, which ecologically speaking is the richness of the least species-rich compartment of the84

bipartite network (or the richness in the case of unipartite networks). A matrix is “full-ranked”85

when r =M , i.e. all of its rows/columns are unique. Matrices that are not full-ranked are called86

rank deficient, and we can measure rank deficiency using d = M − r. So as to control for the87

difference in species richness of the different networks, we report the relative rank deficiency,88

i.e. expressed as a ratio between rank deficiency and the maximal rank:89

D = 1 − r
M

(1)

This measure returns values between 0 (the matrix is full ranked) and 1 −M−1 ≈ 1 (the matrix90

has rank 1). This serves as a coarse estimate of complexity, as the more unique columns/rows91

are in the matrix, the larger this value will be. Yet it may also lack sensitivity, because it imposes92

a stringent test on uniqueness, which calls for more quantitative approaches to complexity.93

Estimating complexity with SVD entropy94

Singular Value Decomposition (SVD) is the factorisation of a matrix A (where Am,n ∈ B in our95

case, but SVD works for matrices of real numbers as well) into the form U ⋅� ⋅VT . Where U is96

an m × m orthogonal matrix and V an n × n orthogonal matrix. The columns in these matrices97
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are, respectively, the left- and right-singular vectors of A, were U = AAT and V = ATA. � is a98

matrix that only contains non-negative � values along its diagonal and all other entries are zero.99

Where �i = Σii, which contains the singular values of A. When the values of � are arranged100

in descending order, the singular values (�) are unique, though the singular vectors (U and V)101

may not be.102

After the Eckart-Young-Mirsky theorem (Eckart and Young 1936; G. H. Golub, Hoffman, and103

Stewart 1987), the number of non-zero entries (after rounding of small values if required due104

to numerical precision issues in computing the factorisation) in � is the rank of matrix A. For105

the sake of simplicity in notation, we will use k = rk(A)) for the rank of the matrix. Because106

only the first k elements of � are non-zero, and that the result of the SVD is a simple matrix107

multiplication, one can define a truncated SVD containing only the first k singular values.108

Intuitively, the singular value i (�i) measures how much of the dataset is (proportionally) ex-109

plained by each vector - therefore, one can measure the entropy of � following Shannon (1948).110

High values of SVD entropy reflects that all vectors are equally important, i.e. that the struc-111

ture of the ecological network cannot efficiently be compressed, and therefore indicates high112

complexity (Gu and Shao 2016). Because networks have different dimensions, we use Pielou’s113

evenness (Pielou 1975) to ensure that values are lower than unity, and quantify SVD entropy,114

using si = �i∕sum(�) as:115

J = − 1
ln(k)

k
∑

i=1
si ⋅ ln(si) (2)

Results and discussion116

Most ecological networks are close to full-rank117

Themajority (63% of our dataset) of bipartite ecological networks have a relative rank deficiency118

of 0 (fig. 1), which indicates that all species have different and unique interaction lists. Interest-119

ingly, the networks that had a comparatively larger relative rank deficiency tended to be smaller120

ones. Yet because most of the networks return the same value, matrix rank does not appear to be121
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a useful or discriminant measure of network complexity. Another striking result (from fig. 1) is122

that the SVD entropy of ecological networks is really large – although the value can range from123

0 to 1, all ecological networks had SVD entropy larger than 0.8, which is indicative of a strong124

complexity.125

[Figure 1 about here.]126

As expected following the observation that ecological networks are overwhelmingly full ranked,127

we do not see a relationship between SVD entropy and relative rank deficiency, neither do we128

observe differences between interaction types (fig. 2). Based on these results, we feel confi-129

dent that SVD entropy provides a more informative measure of the complexity of ecological130

networks, and will use it moving forward.131

[Figure 2 about here.]132

Most elements of network structure capture network complexity133

We compared SVD entropy to some of the more common measures of complexity, namely nest-134

edness (�, as per Bastolla et al. (2009)), connectance (Co), and the spectral radius of the network135

(�, following Staniczenko, Kopp, and Allesina (2013)). All of these measures are positively136

correlated, especially over the range of connectances covered by empirical bipartite ecological137

networks.138

Nestedness is calculated based on the number of interactions shared between species pairs and139

is a measure of the degree of overlap between species links (or strategies) in the community,140

where larger assemblages are made up of a subset of smaller ones that share common interac-141

tions. Networks with a higher degree of nestedness could be considered simpler when compared142

to networks with a lower degree of nestedness. Connectance is the realised number of interac-143

tions (links) in an ecological network and is calculated as the fraction of the total number of144

realised interactions (or links) and the maximum number of possible interactions in a network145

(Martinez 1992). This has been shown to be a good estimate of a community’s resilience to per-146

turbation (Dunne, Williams, and Martinez 2002). The spectral radius of a matrix is the largest147
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absolute value of its eigenvalues, which, in addition to being presented as a measure of net-148

work complexity has also been suggested as an indicator of the ability of a system to dampen149

disturbances (Phillips 2011).150

We find that SVD entropy has a clear negative relationship with nestedness, spectral radius,151

and connectance (fig. 3). As in fig. 5, mutualistic networks tend to be more complex, and they152

also are both sparser and less nested than other types of networks. Bastolla et al. (2009) give a153

convincing demonstration that mutualistic networks are shaped to minimise competition – this154

can be done by avoiding to duplicate overlap in interactions, thereby resulting in a network that is155

close to full rank, and with high SVD entropy. Interestingly, fig. 3 suggests that both nestedness156

and connectance measure the lack of complexity in an ecological network, which contrasts to157

how they may commonly be viewed (Landi et al. 2018).158

[Figure 3 about here.]159

Complex networks are not more robust to extinction160

One approach to calculating the overall structural robustness of an ecological network is by sim-161

ulating extinction events through the sequential removal of species, which allows constructing162

an extinction curve that plots the relationship between species removed and cumulative sec-163

ondary extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser, and Price 2004).164

Extinction events can be simulated in a manner of different ways, either by removing 1) a ran-165

dom individual, 2) systematically removing the most connected species (one with the highest166

number of interactions with other species) and 3) the least connected species (Dunne, Williams,167

and Martinez 2002). After each extinction event, we remove species from the network that no168

longer have any interacting partners, thereby simulating secondary extinctions. This is then169

repeated until there are no species remaining in the network. Furthermore, we can restrict ex-170

tinction events to only one dimension of the interaction matrix, i.e. removing only top-level or171

bottom-level species, or alternatively removing a species from any dimension of the matrix. Ex-172

tinction curves are then constructed by plotting the proportion of species remaining against those173

that have been removed; it stands to reason that a flatter curve ‘maintains’ its species pool for a174

9 of 18



longer number of cumulative extinctions, and could be seen as more resilient, when compared175

to a curve that has a much steeper decline. As per previous studies, we measure the robustness176

to extinction as the area under the extinction curve (AUC), calculated using the Trapezoidal177

rule. AUC values close to 0 means that a single extinction is enough to collapse the network178

almost entirely, and values close to 1 means that most species persist even when the number of179

extinctions is really high.180

When looking at the relationship between SVD entropy and the area under an extinction curve181

(as a proxy for resilience to extinction) we find differences depending on both the extinction182

mechanism as well as along which dimension the species removal occurred (fig. 4). As a whole183

we do not observe any obvious relationships between SVD entropy and resilience, nor for dif-184

ferent interaction types. We do however see differences in the resilience of networks depending185

on how the extinctions were simulated. Generally we see a higher resilience in networks where186

species of only a specific group are removed or in networks where species were either randomly187

removed or based on an increasing number of interactions.188

[Figure 4 about here.]189

As highlighted in fig. 3 SVD entropy can be used as an additional measure of network complex-190

ity. However, as shown in fig. 4, the assumption that network complexity begets resilience to191

extinction begins to unravel when we use a measure of physical complexity. This is in contrast192

to previous studies that have shown how connectance plays a role in the resilience of networks193

to extinctions (Dunne, Williams, and Martinez 2002; Memmott, Waser, and Price 2004). This194

does not discount the role of using structuralmeasures of network complexity (e.g. connectance,195

nestedness or spectreal radius) as indicators of their resilience (although possibly hinting as to196

why there is no strong emerging consensus as to how structural complexity relates to this), but197

rather points to an erroneous assumption as to what aspects of a network we have previously198

used to define its complexity.199
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Plant-pollinator networks are slightly more complex200

Although we don’t observe clear differences in the relationship between different interaction201

types when comparing amongst various measures of complexity, we do find that different types202

of interaction networks have differing SVD entropies. When comparing calculated SVD entropy203

between interaction types using an ANOVA (after excluding Plant-Ant and Plant-Herbivore in-204

teractions due to their small sample size in our dataset) we find a significant difference between205

group means (F = 47.047, p < 10−3). A Tukey’s HSD test reveals that plant-pollinator net-206

works (� = .924) are more complex than both host- parasite networks (� = .885, p < 10−3) and207

seed dispersal (� = .888, p < 10−3). Host-parasite and seed dispersal networks had apparently208

no difference in average complexity (p = .889). These results suggest that mutualistic networks209

may bemore complex, whichmatches with previous litterature: these networks have been shown210

to minimise competition (Bastolla et al. 2009) and favour unique interactions, thereby increas-211

ing network complexity. This specific structure can appear as a side-process of either ecological212

(Maynard, Serván, and Allesina 2018) or evolutionary (Valverde et al. 2018) processes, but213

nevertheless leaves a profound imprint on the complexity of the networks.214

[Figure 5 about here.]215

Connectance constrains complexity (but also rank deficiency)216

We used simulated annealing (Kirkpatrick 1984) to generate networks with the highest, or low-217

est, possible SVD entropy values. From a set network size (30 species, 15 on each side) with218

a random number of interactions (spanning the entire range from minimally to maximally con-219

nected), we reorganised interactions until the SVD entropy was as close to 0 or 1 as possi-220

ble. We repeated the process 25 times for every number of interactions. We also measured221

the relative rank deficiency of the generated networks. This allows identifying the bound-222

aries of both measures of complexity. The specific simulated annealing we used is as follows.223

We set an initial temperature T0 = 2. At every timestep t (up until t = 104), the tempera-224

ture is set to Tt = T0 × �t, so that is decays exponentially at a rate � = 1 − 10−4. At each225

timestep, we switch two interactions in the network  at random to generate a proposal net-226
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work. The score of this proposal is the difference between the squared error of and i.e.227

Δ = (f ()−�)2−(f ( )−�)2, where f is the SVD entropy and � is the target for optimisation228

(either 0 or 1 for respectively minimally or maximally complex). A proposal is accepted with229

probability P( → |Δ) = exp
(

−Δ × T −1t
)

.230

By exploring the minimal and maximal values of SVD entropy for networks of a given size,231

we can show that the range of complexity that a network can express varies as a function of232

connectance (fig. 6). As reported by Poisot and Gravel (2014), there is no variation when the233

networks are either minimally or maximally connected, but any connectance in between can234

give rise to networks of varying complexities. This being said – minimally connected networks235

always show the largest complexity, and an increase in connectance will always decrease com-236

plexity. Interestingly, this relationship is monotonous, and there is no peak of complexity where237

the maximal number of possible networks combination exists, i.e. around Co ≈ 0.5 (Poisot and238

Gravel 2014). This is an intriguing result – ecological networks are indeed extremely complex,239

but whereas ecologists have usually interpreted connectance as a measure of complexity, it is in240

fact sparse networks that are the complex ones, and connectance acts to decomplexify network241

structure.242

[Figure 6 about here.]243

The right panel of fig. 6 shows the average rank deficiency of networks for which SVD entropy244

was either maximised or minimised. Complex networks (meaning, maximally complex given245

their connectance) had a lower deficiency, indicating that except at extreme connectances, there246

are combinations of networks for which all species can interact in unique ways – this is a natural247

consequence of the results reported by Poisot and Gravel (2014), whereby the number of possi-248

ble networks is only really constrained at the far ends of the connectance gradient. Minimally249

complex networks, on the other hand, saw their rank deficiency increase with connectance. This250

hints at the fact that the decrease in complexity with connectance may be primarily driven by the251

infeasibility of having enough species for them to all interact uniquely as connectance increases.252

Because non-unique interactions tend to result in competition (Jordi Bascompte and Jordano253

2007), this can “push” networks towards the full-rank configuration (as suggested by the results254
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in fig. 1), thereby maximising complexity regardless of connectance.255

Larger networks are less complex than they could be256

To assess whether ecological networks are more, or less, complex than expected, we applied257

two null models that generate pseudo-random networks: Type I (Fortuna and Bascompte 2006),258

where interactions happen proportionally to connectance, and Type II (J. Bascompte et al. 2003),259

where interactions happen proportionally to the joint degree of the two species involved. The260

models are equivalent to, respectively, the Erdos-Renyi and Configuration models (Newman261

2010), both of which aremaximum entropy generativemodels that reflect global (Type I) or local262

(Type II) constraints (Park and Newman 2004). We generated 999 samples for every network in263

the dataset, and measured the z-score of the empirical network as264

zi =
xi − �i
�i

(3)

where xi is the SVD entropy of network i, and �i and �i are respectively the average and standard265

deviation of the distribution of SVD entropy under the null model. Negative values of zi reflect266

a network that has lower entropy than expected under the assumptions of the null model. In267

fig. 7, we show that despite high absolute values of SVD entropy, ecological networks are not as268

complex as they could be. This is consistently true for both null models, and for the three types269

of networks that had a sufficient sample size.270

[Figure 7 about here.]271

Previous work on random networks (using a model that is essentially the Type I null model)272

shows that sufficiently large networks achieve maximal von Neuman entropy (Du et al. 2010;273

Passerini and Severini 2011). In fig. 8, we compare the logistic of zi to the richness of the274

network. Transforming to the logistic smooths out differences in absolute value that are apparent275

in fig. 7, and projects the values in the unit range, with values above 0.5 beingmore complex than276

expected. It is quite obvious that, across both models and the three types of interactions, only277

smaller networks achieve higher entropy. Barbier et al. (2018) and Saravia et al. (2018) have278
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previously noted that the early stages of network assembly usually result in severely constrained279

networks, due to the conditions required for multiple species to persist; as networks grow larger,280

these constraints may “relax,” leading in networks with more redundancy, and therefore a lower281

complexity.282

[Figure 8 about here.]283

Conclusion284

We present SVD entropy as a starting point to unifying (and standardising) how we should ap-285

proach defining the complexity of ecological networks. The use of a unified definition will allow286

us to revisit how complexity relates to the ecological properties of networks using a standard-287

ised method. One important result from using SVD entropy is that the complexity of ecological288

networks is indeed immense, yet despite this high complexity networks are still not reaching289

their maximum potential complexity. We suggest that the assembly dynamics of networks may290

explain this observation but this still raises the question as to why larger (or more mature) net-291

works are not ‘maintaining’ their expected complexity and prompts further exploration as to the292

role of ecological assembly in structuring networks.293
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Figure 1: The relationship between network richness and relative rank deficiency, and SVD
entropy. The different types of interactions are indicated by the colours.
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Figure 2: The relationship between SVD entropy and the relative rank deficiency of different
species interaction networks Colours indicate the different interaction types of the networks.
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Figure 3: The relationship between SVD entropy and the nestedness (left panel), spectral radius
(central panel) and connectance (right panel) of ecological networks. Colours indicate the dif-
ferent interaction types of the networks.
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Figure 4: The relationship between SVD entropy and the area under an extinction curve (as
a proxy for resilience to extinction) for both different extinction mechanisms (Random = the
removal of a random species, Decreasing = the removal of species in order of decreasing number
of interactions (i.e most to least number of interactions), Increasing = the removal of species
in order of increasing number of interactions) as well as along different dimensions (species
groups) of the network (All = any species, Top-level = only top-level species, and Bottom-level
= only bottom- level species) Colours indicate the different interaction types of the networks.
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Figure 5: The calculated SVD entropy of different interaction networks of different interaction
types
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Figure 6: The relationship between the maximum and minimum value of SVD entropy of a
collection of random interaction networks (using simulated annealing) for a given connectance
spanning from 0 to 1 (left panel) and how this relates to the relative rank deficiency of networks
(right panel)

24 of 18



Figure 7: The counts of the zi-scores of different types of networks for both Type I and Type II
null models. Negative zi-scores indicate networks with an SVD entropy that is lower i.e. less
complex than expected
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Figure 8: The logistic zi-scores of different types of networks for both Type I and Type II null
models compared to the species richness of the network. Where zi-scores below 0.5 indicate
networks with an SVD entropy that is lower i.e. less complex than expected
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