CHELSA2
CHELSA (Climatologies at high resolution for the earth’s land surface areas) is a very high resolution (30 arc sec, ~1km) global downscaled climate data set currently hosted by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. It is built to provide free access to high resolution climate data for research and application, and is constantly updated and refined.
Citations
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122.
Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat.
For more information about this provider: https://chelsa-climate.org/
AverageTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(CHELSA2, AverageTemperature))
Average temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://chelsa-climate.org/
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{CHELSA2, AverageTemperature})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
BioClim
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(CHELSA2, BioClim))
The BioClim variables are derived from monthly data about precipitation and temperature, and convey information about annual variation, as well as extreme values for specific quarters. These variables are usually thought to represent limiting environmental conditions.
For more information about this dataset: https://chelsa-climate.org/
Keyword argument layer
Layer code | Description |
---|---|
BIO8 | Mean Temperature of Wettest Quarter |
BIO14 | Precipitation of Driest Month |
BIO16 | Precipitation of Wettest Quarter |
BIO18 | Precipitation of Warmest Quarter |
BIO19 | Precipitation of Coldest Quarter |
BIO10 | Mean Temperature of Warmest Quarter |
BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp - min temp)) |
BIO11 | Mean Temperature of Coldest Quarter |
BIO6 | Min Temperature of Coldest Month |
BIO4 | Temperature Seasonality (standard deviation ×100) |
BIO17 | Precipitation of Driest Quarter |
BIO7 | Temperature Annual Range (BIO5-BIO6) |
BIO1 | Annual Mean Temperature |
BIO5 | Max Temperature of Warmest Month |
BIO9 | Mean Temperature of Driest Quarter |
BIO3 | Isothermality (BIO2/BIO7) (×100) |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
MaximumTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(CHELSA2, MaximumTemperature))
Maximum temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://chelsa-climate.org/
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{CHELSA2, MaximumTemperature})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
MinimumTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(CHELSA2, MinimumTemperature))
Minimum temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://chelsa-climate.org/
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{CHELSA2, MinimumTemperature})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Precipitation
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(CHELSA2, Precipitation))
Precipitation (rainfall) within each grid cell, usually represented as the total amount received, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://chelsa-climate.org/
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{CHELSA2, Precipitation})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: GFDL_ESM4
, IPSL_CM6A_LR
, MPI_ESM1_2_HR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2011) => Year(2040), Year(2041) => Year(2070) and Year(2071) => Year(2100)