WorldClim2
WorldClim is a database of high spatial resolution global weather and climate data. These data can be used for mapping and spatial modeling. The data are provided for use in research and related activities.
Citation
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
For more information about this provider:
AverageTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, AverageTemperature))
Average temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, AverageTemperature})
.
BioClim
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, BioClim))
The BioClim variables are derived from monthly data about precipitation and temperature, and convey information about annual variation, as well as extreme values for specific quarters. These variables are usually thought to represent limiting environmental conditions.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument layer
Layer code | Description |
---|---|
BIO8 | Mean Temperature of Wettest Quarter |
BIO14 | Precipitation of Driest Month |
BIO16 | Precipitation of Wettest Quarter |
BIO18 | Precipitation of Warmest Quarter |
BIO19 | Precipitation of Coldest Quarter |
BIO10 | Mean Temperature of Warmest Quarter |
BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp - min temp)) |
BIO11 | Mean Temperature of Coldest Quarter |
BIO6 | Min Temperature of Coldest Month |
BIO4 | Temperature Seasonality (standard deviation ×100) |
BIO17 | Precipitation of Driest Quarter |
BIO7 | Temperature Annual Range (BIO5-BIO6) |
BIO1 | Annual Mean Temperature |
BIO5 | Max Temperature of Warmest Month |
BIO9 | Mean Temperature of Driest Quarter |
BIO3 | Isothermality (BIO2/BIO7) (×100) |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP245
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Elevation
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, Elevation))
Information about elevation, that usually comes from a DEM.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
MaximumTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, MaximumTemperature))
Maximum temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, MaximumTemperature})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP245
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
MinimumTemperature
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, MinimumTemperature))
Minimum temperature within each grid cell, usually represented in degrees, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, MinimumTemperature})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP245
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Precipitation
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, Precipitation))
Precipitation (rainfall) within each grid cell, usually represented as the total amount received, and usually provided as part of a dataset giving daily, weekly, or monthly temporal resolution.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, Precipitation})
.
Projections for SSP126
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP245
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP370
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, GFDL_ESM4
, GISS_E2_1_G
, GISS_E2_1_H
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
Projections for SSP585
Note that the future scenarios support the same keyword arguments as the contemporary data.
Models: ACCESS_CM2
, ACCESS_ESM1_5
, BCC_CSM2_MR
, CMCC_ESM2
, CNRM_CM6_1
, CNRM_CM6_1_HR
, CNRM_ESM2_1
, CanESM5
, CanESM5_CanOE
, EC_Earth3_Veg
, EC_Earth3_Veg_LR
, FIO_ESM_2_0
, GISS_E2_1_G
, GISS_E2_1_H
, HadGEM3_GC31_LL
, INM_CM4_8
, INM_CM5_0
, IPSL_CM6A_LR
, MIROC6
, MIROC_ES2L
, MPI_ESM1_2_HR
, MPI_ESM1_2_LR
, MRI_ESM2_0
and UKESM1_0_LL
Timespans: Year(2021) => Year(2040), Year(2041) => Year(2060), Year(2061) => Year(2080) and Year(2081) => Year(2100)
SolarRadiation
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, SolarRadiation))
WorldClim is a database of high spatial resolution global weather and climate data. These data can be used for mapping and spatial modeling. The data are provided for use in research and related activities.
Citation
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, SolarRadiation})
.
WaterVaporPressure
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, WaterVaporPressure))
WorldClim is a database of high spatial resolution global weather and climate data. These data can be used for mapping and spatial modeling. The data are provided for use in research and related activities.
Citation
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, WaterVaporPressure})
.
WindSpeed
using SpeciesDistributionToolkit
layer = SDMLayer(RasterData(WorldClim2, WindSpeed))
WorldClim is a database of high spatial resolution global weather and climate data. These data can be used for mapping and spatial modeling. The data are provided for use in research and related activities.
Citation
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
For more information about this dataset: https://www.worldclim.org/data/index.html
Keyword argument resolution
5 arc minutes - 5.0
30 arc seconds, approx. 1×1 km - 0.5
10 arc minutes - 10.0
2.5 arc minutes, approx 4×4 km - 2.5
Keyword argument month
This dataset can be accessed monthly, using the month
keyword argument. You can list the available months using SimpleSDMDatasets.months(RasterData{WorldClim2, WindSpeed})
.